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Constraints and Goals for Upgraded Lattice

 Retain 40 sector configuration 
 Retain 35 ID straights serving existing end stations
 Retain location of bending magnet beam lines
 Keep the existing rf systems

– Cost reduction
– Compatibility with existing injector
– Requires fairly close matching of circumference

 Keep the existing injector, with modest upgrades if needed
– Existing injector comprises a 375+ MeV linac, accumulator ring, and 2 Hz 

booster

 Performance goals
– Provide ~100-fold increase in x-ray brightness relative to best devices in 

APS today
– Maintain tuning ranges
– Maintain or increase ID flux
– Maintain bending magnet flux and spectral range (at least 17 keV critical 

energy)
– Approximately maintain timing-mode performance (at least 4 mA/bunch)
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Lattice Optimization Approach

 Lattice optimization consisted of three steps
– Initial matching of linear optics for nominal integer tunes
– Wide-ranging scan of integer and fractional tunes to understand landscape 

of solutions
– Tracking-based multi-objective optimization of optics and sextupoles

 Initial matching started from solution provided by ESRF1

– Changed from 32 to 40 sectors
– Constraints included

• Minimum emittance with <3mm dispersion in straights
• Beta functions of 1-3 m in 4.8-m-long ID straights
• ID beamline transverse motion less than 5 mm
• Circumference change on [-8, 0] cm to avoid issues with booster
• Weak magnets (relative to engineering concepts)
• Chromaticity of +2 in both planes

– Variables included
• All magnet strengths and lengths
• Two sextupole families at this point (SD-SF-SD in each bump)
• Relative strengths of 5 segments of the longitudinal dipoles

– Use “hybrid parallel simplex” optimizer in Pelegant2

1: Provided by P. Raimondi, L. Farvacque, N. Carmignani, et al.
2: Y.Wang et al, PAC 11, 787 (2011).
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Scan of Working Points

 Next step was a broad survey of possible working points 
 In addition to basic properties, evaluated nonlinear properties of 

working points
– Dynamic acceptance and tune footprint within stable region
– Momentum acceptance and tune footprint within stable region
– Local momentum acceptance
– These used two features of Pelegant

• Existing local momentum acceptance search
• New tune footprint command

 Results were subjected to non-dominated sort1 to find the Pareto-
optimal solutions for best
– Beta functions at ID
– Natural and effective emittance
– Stability limit from tune vs momentum
– Local momentum acceptance
– Dynamic aperture (normalized with beta functions)

1: K. Deb et al., IEEE TEC, 6:182 (2002).
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Linear Lattice Properties 
Horizontal beta function @ID Vertical beta function @ID

Natural emittance (pm)

Minimizing the emittance is
incompatible with reducing
horizontal beta function to the
ideal value of ~1.5 m
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Nonlinear Properties
Limit of stable chromatic tune Minimum local momentum acceptance

DA Area scaled with beta functions

Not possible to simultaneously
optimize all of these.

Three Pareto-optimal solutions
subjected to tracking-based
optimization, including 
(105.35, 34.15), which has
<60 pm natural emittance
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Tracking-Based Optimization1

 We used tracking-based optimization to refine several solutions, 
emphasizing
– Maximum dynamic acceptance area
– Maximum Touschek lifetime computed from local momentum acceptance
– Minimum emittance
– Desired chromaticities of +2 in both planes
– These are optimized in a multi-objective sense (MOGA)

 The algorithm is allowed to vary 
– Tunes, restricted to fixed quadrant of the tune diagram
– Target value for maximum dispersion in the bump
– 10 sextupole strengths (out of 12 present in two sectors)
– Target values of horizontal and vertical phase advance between sextupoles

 Each “function evaluation” involves
– Matching to change tunes, phase advance, etc., while minimizing emittance
– Adjustment of free sextupoles to obtain desired chromaticities
– Tracking to determine stable range of chromatic tunes
– Tracking with errors for dynamic acceptance
– Tracking with errors for local momentum acceptance (first two sectors only)
– Typically takes 20-40 minutes on 32 cores

1: See citations in M. Borland, IPAC12, 1035.
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“Best” Solution from Optimization
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Best Solution from Optimization

Start

 Touschek lifetime is computed 
with 10% coupling, 200 mA, 
432 bunches, and 20 mm 
bunch length, which requires a 
harmonic cavity

 DA is only large enough for on-
axis injection

 LMA is above 2%, similar to 
APS today
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Frequency Map Analysis (x-y)

 FMA shows that the tune footprint of the stable region 
extends across the horizontal half integer

 DA search algorithm should detect this if it was an issue
– Search uses sufficiently small steps and sufficiently large 

number of turns to damp across the resonance
– Errors included in tracking

 Presumably this works because the horizontal tune shift 
with amplitude is very large
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Additional Tracking to Confirm DA

 We tracked a grid of particles for 3000 turns with synchrotron radiation
 Tracked for all 93 error ensembles
 Some trapping on the half-integer resonance evident, but no losses

– Reduced if quantum excitation added, but needs more investigation

 Note that DA search only uses 400 turns, which this test confirms to be 
adequate
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Frequency Map Analysis (x-δ)

 Horizontal chromatic tune 
footprint extends in opposite 
direction from amplitude tune 
footprint

 Voids in FMA correspond again 
to half-integer resonance

 Particles are not lost, but rather 
have ill-defined tunes

 Tracking a grid of particles with 
errors and radiation damping for 
one damping time confirms this
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Checking Robustness of Solution

 To check the robustness of the solution, want to look at DA, LMA, lifetime 
for many error ensembles

 We don’t have correction algorithms set up yet, so we used a proxy 
method

– Generated a large number (12000) of error ensembles with 
• 0.06% rms errors in quadrupoles and sextuoples
• 1 mrad tilt errors in quadrupoles and sextupoles

– Corrected tunes (using quads near IDs), then computed lattice functions and 
coupled beam moments

– Selected those ensembles giving
• 7-10% beta function beats
• Emittance ratio of 0.1 to 0.2

– The 93 remaining ensembles are proxies for somewhat badly corrected lattices

 Included physical apertures
– 20mm ID round aperture in arcs
– 20mm by 6 mm ellipse in ID straights
– These appear to have no effect on the acceptances

 Included allowed multipoles in quads and sextupoles, up to 42-pole
– Fractional error at 10mm radius set to the same value for all multipoles
– I.e., they all add up, which is presumably the worst case



M. Borland et al., APS MBA lattice, 26 Nov 2013
14

DA vs Systematic Multipole Level

0.1% each 0.3% each

1.0% each 3.0% each
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LMA vs Systematic Multipole Level

0.1% each 0.3% each

1.0% each 3.0% each



M. Borland et al., APS MBA lattice, 26 Nov 2013
16

Acknowledgements

 APS-U Beam Physics Team
– Y.-C. Chae, L. Emery, G. Decker, K. Harkay, V. Sajaev, N. 

Sereno, Y.-P. Sun, A. Xiao, C.-Y. Yao, A. Zholents
 ESRF for providing a copy of their lattice


	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

