

Optimization of an ESRF-II-Style Lattice for APS

Michael Borland for APS-U Beam Physics Team

December 9, 2013 Accelerator Systems Division

Constraints and Goals for Upgraded Lattice

- Retain 40 sector configuration
- Retain 35 ID straights serving existing end stations
- Retain location of bending magnet beam lines
- Keep the existing rf systems
 - Cost reduction
 - Compatibility with existing injector
 - Requires fairly close matching of circumference
- Keep the existing injector, with modest upgrades if needed
 - Existing injector comprises a 375+ MeV linac, accumulator ring, and 2 Hz booster
- Performance goals
 - Provide ~100-fold increase in x-ray brightness relative to best devices in APS today
 - Maintain tuning ranges
 - Maintain or increase ID flux
 - Maintain bending magnet flux and spectral range (at least 17 keV critical energy)
 - Approximately maintain timing-mode performance (at least 4 mA/bunch)

Lattice Optimization Approach

- Lattice optimization consisted of three steps
 - Initial matching of linear optics for nominal integer tunes
 - Wide-ranging scan of integer and fractional tunes to understand landscape of solutions
 - Tracking-based multi-objective optimization of optics and sextupoles
- Initial matching started from solution provided by ESRF¹
 - Changed from 32 to 40 sectors
 - Constraints included
 - Minimum emittance with <3mm dispersion in straights
 - Beta functions of 1-3 m in 4.8-m-long ID straights
 - ID beamline transverse motion less than 5 mm
 - Circumference change on [-8, 0] cm to avoid issues with booster
 - Weak magnets (relative to engineering concepts)
 - Chromaticity of +2 in both planes
 - Variables included
 - All magnet strengths and lengths
 - Two sextupole families at this point (SD-SF-SD in each bump)
 - Relative strengths of 5 segments of the longitudinal dipoles
 - Use "hybrid parallel simplex" optimizer in Pelegant²

1: Provided by P. Raimondi, L. Farvacque, N. Carmignani, et al. 2: Y.Wang et al, PAC 11, 787 (2011).

Scan of Working Points

- Next step was a broad survey of possible working points
- In addition to basic properties, evaluated nonlinear properties of working points
 - Dynamic acceptance and tune footprint within stable region
 - Momentum acceptance and tune footprint within stable region
 - Local momentum acceptance
 - These used two features of Pelegant
 - Existing local momentum acceptance search
 - New tune footprint command
- Results were subjected to non-dominated sort¹ to find the Paretooptimal solutions for best
 - Beta functions at ID
 - Natural and effective emittance
 - Stability limit from tune vs momentum
 - Local momentum acceptance
 - Dynamic aperture (normalized with beta functions)

1: K. Deb et al., IEEE TEC, 6:182 (2002).

Linear Lattice Properties

Vertical beta function @ID 39 belayO (m) 38 3.2 37 3.0 ν, (1/(2π)) 2.8 36 2.6 35 2.4 34 2.2 33 2.0 32 100 102 106 108 04 $\nu_{\star} (1/(2\pi))$

> Minimizing the emittance is incompatible with reducing horizontal beta function to the ideal value of ~1.5 m

Nonlinear Properties

4

2

108

Minimum local momentum acceptance

Not possible to simultaneously optimize all of these.

Three Pareto-optimal solutions subjected to tracking-based optimization, including (105.35, 34.15), which has <60 pm natural emittance

102

104 106

 $\nu_{\star} (1/(2\pi))$

۲ ک

34

33

32

100

Tracking-Based Optimization¹

- We used tracking-based optimization to refine several solutions, emphasizing
 - Maximum dynamic acceptance area
 - Maximum Touschek lifetime computed from local momentum acceptance
 - Minimum emittance
 - Desired chromaticities of +2 in both planes
 - These are optimized in a multi-objective sense (MOGA)
- The algorithm is allowed to vary
 - Tunes, restricted to fixed quadrant of the tune diagram
 - Target value for maximum dispersion in the bump
 - 10 sextupole strengths (out of 12 present in two sectors)
 - Target values of horizontal and vertical phase advance between sextupoles
- Each "function evaluation" involves
 - Matching to change tunes, phase advance, etc., while minimizing emittance
 - Adjustment of free sextupoles to obtain desired chromaticities
 - Tracking to determine stable range of chromatic tunes
 - Tracking with errors for dynamic acceptance
 - Tracking with errors for local momentum acceptance (first two sectors only)
 - Typically takes 20-40 minutes on 32 cores

1: See citations in M. Borland, IPAC12, 1035.

"Best" Solution from Optimization

Radiation-integral-related quantities at 6 Ge	эV
---	----

Betatron Tunes		
Horizontal	105.445	
Vertical	34.146	
Natural Chormaticities		
Horizontal	-152	
Vertical	-127	
Lattice functions		
Maximum β_x	12.498	m
Maximum β_y	19.997	m
Maximum η_x	0.073	m
Average β_x	3.490	m
Average β_y	9.325	m
Average η_x	0.032	m

Natural emittance	58.679	pm
Energy spread	0.094	%
Horizontal damping time	13.520	\mathbf{ms}
Vertical damping time	21.342	\mathbf{ms}
Longitudinal damping time	15.014	\mathbf{ms}
Energy loss per turn	2.071	MeV
ID Straight Sections		
β_x	1.298	m
β_y	2.853	m
Miscellaneous parameters		
Circumference	1103.984694	m
Momentum compaction	6.131×10^{-5}	
Damping partition J_x	1.579	
Damping partition J_y	1.000	
Damping partition J_{δ}	1.421	

Best Solution from Optimization

- Touschek lifetime is computed with 10% coupling, 200 mA, 432 bunches, and 20 mm bunch length, which requires a harmonic cavity
- DA is only large enough for onaxis injection
- LMA is above 2%, similar to APS today

Frequency Map Analysis (x-y)

- FMA shows that the tune footprint of the stable region extends across the horizontal half integer
- DA search algorithm should detect this if it was an issue
 - Search uses sufficiently small steps and sufficiently large number of turns to damp across the resonance
 - Errors included in tracking
- Presumably this works because the horizontal tune shift with amplitude is very large

Additional Tracking to Confirm DA

- We tracked a grid of particles for 3000 turns with synchrotron radiation
- Tracked for all 93 error ensembles
- Some trapping on the half-integer resonance evident, but no losses
 - Reduced if quantum excitation added, but needs more investigation
- Note that DA search only uses 400 turns, which this test confirms to be adequate

Frequency Map Analysis (x-δ)

Checking Robustness of Solution

- To check the robustness of the solution, want to look at DA, LMA, lifetime for many error ensembles
- We don't have correction algorithms set up yet, so we used a proxy method
 - Generated a large number (12000) of error ensembles with
 - 0.06% rms errors in quadrupoles and sextuoples
 - 1 mrad tilt errors in quadrupoles and sextupoles
 - Corrected tunes (using quads near IDs), then computed lattice functions and coupled beam moments
 - Selected those ensembles giving
 - 7-10% beta function beats
 - Emittance ratio of 0.1 to 0.2
 - The 93 remaining ensembles are proxies for somewhat badly corrected lattices
- Included physical apertures
 - 20mm ID round aperture in arcs
 - 20mm by 6 mm ellipse in ID straights
 - These appear to have no effect on the acceptances
- Included allowed multipoles in quads and sextupoles, up to 42-pole
 - Fractional error at 10mm radius set to the same value for all multipoles
 - I.e., they all add up, which is presumably the worst case

DA vs Systematic Multipole Level

LMA vs Systematic Multipole Level

Acknowledgements

- APS-U Beam Physics Team
 - Y.-C. Chae, L. Emery, G. Decker, K. Harkay, V. Sajaev, N. Sereno, Y.-P. Sun, A. Xiao, C.-Y. Yao, A. Zholents
- ESRF for providing a copy of their lattice

