

# **XPCS** at a **DLSR**

Alec Sandy Time Resolved research Group X-Ray Science Division Argonne National Laboratory



### Outline

- XPCS Considerations
- XPCS at Storage Rings
- XPCS Detectors
- Science Opportunities
- Conclusions

# **XPCS** Considerations

XPCS at storage rings today is unique probe of relatively slow dynamics at the nanoscale

- Time autocorrelation function,  $g_2(\tau)$ , is typical quantity of interest
  - Visibility, higher-order correlation functions 10<sup>-7</sup> also interesting



1.2

1.1

1.0

QR=6.0

0.1

1.0

Time Delay [s]

10.0

DLSR Workshop - 12/9/13-12/11/13

200

100.0

# **XPCS Considerations**

- Coherent flux:  $F_c = B(\lambda/2)^2$
- Signal-to-noise (SNR) ratio of  $g_2(\tau)$  guides improvements and enables new science

# $SNR = Contrast \times Intensity \times \sqrt{T\tau N}$

- Contrast is speckle contrast or speckle visibility (0 → 1)
- (Coherent) Intensity ≈ Source Brilliance
- T = measurement duration (often limited by sample damage and/or long-time stability of measurement apparatus)
- $\tau = \text{delay time} \approx (\text{detector acquisition or frame rate})^{-1}$
- N = number of detectors (pixels)

Fast 2-D detectors are the way to go!

Accessible delay times go like the square of the coherent intensity!

- Modest changes in storage rings, beamline design and detectors have produced a remarkable increase in XPCS capabilities and science over the past 15-20 years
  - Time scales from 10-100's of seconds to 2-10 ms with 10X more brilliance
  - Quantitative measures of unusual nanoscale dynamics



- Domain coarsening in glasses
  - [A. Malik et al., PRL 81, 5832 20 (1998)]
  - Dynamics measured in a nonq<sub>y</sub> (10<sup>-3</sup> Å<sup>-1</sup>) <u>5</u> equilibrium system

5

Time scales: > 50-100 s



- L. B. Lurio et al., PRL 84, 785 ۲
  - Time scales > 50 ms





1998

- Dynamics of block copolymer vesicles
  - Membrane fluctuations in a tri-block homopolymer mixture
    - Rapidly fluctuating speckle patterns
    - Correlation functions of sufficient quality to see stretched (2/3) exponential decays
  - Home-built SMD/Dalsa fast direct-detection detector
  - [P. Falus et al., PRL 94, 016105 (2005) and P. Falus et al., RSI 75, 4383 (2004)]
  - Time scales: > 10 ms















Dynamics in a re-entrant glass X. Lu et al., PRL **100**, 045701

Time scales > 2 ms Unusual dynamics over many decades in delay time

 Modest changes in storage rings and beamline design and somewhat larger changes in detectors have produced a remarkable increase in XPCS capabilities and science over the past 15-20 years

~ 2008

#### Recap

- Increased time-averaged brightness from storage rings has (and will be!) leveraged
  - Accessible delay times at the APS have decreased by more than 3 orders of magnitude with 10X increase in brightness, heroic but limited detector efforts and very modest improvements in beamline design
- 2-D detector development must parallel DLSR developments!

### **XPCS Detectors for a DLSR**

Encouraging recent advances but considerable room for improvement

- Current detector characteristics (Maxipix, Eiger, SMD, Frame store FastCCD)
  - Frame rates ~ 100-1,000 s<sup>-1</sup>
  - Pixel sizes ~ 30-100 um<sup>2</sup>
  - Frame sizes  $\sim 0.1 1$  Mpix
  - ~ 100% efficiency to ~ 12 keV
  - Isolated ad hoc firmware compression and off-line calculation of correlation functions







# **XPCS Detectors for a DLSR**

- Greatly improved (XPCS) 2-D detectors are required to leverage the tremendous brilliance gains provided by a DLSR
  - Ideal XPCS detector characteristics:
    - Fast
      - Framing time to 1 μs or less
    - Efficient
      - Operation to ~ 20 keV
        - » Mitigate damage in softer materials
        - » Penetration of diverse sample environments
    - Single-photon sensitivity (low dynamic range)
    - Large area
      - Signal-to-noise increases as square root of number of "detectors"
    - Pixel sizes of 50-100 μm
      - Focusing and sample-to-detector distance mitigates the need for really small pixels
    - Counting or integrating vis-à-vis charge sharing?
    - Upstream intelligence
      - Charge sharing
      - Compression/Sparse readout
      - Short-time correlations

# **Microstructural Avalanches**

### Opportunity

- Industrially relevant steel and shape memory alloys undergo diffusionless (martensitic) transformations
- Martensitic transformations involve cooperative motion of large groups of atoms

### Challenge

- Events are intermittent and localized
- Current observation techniques provide before and after snapshots

#### **DLSR Strength**

- Coherent beam provides localized information even with a large illumination area
- Microsecond probe of avalanche event dynamics
- Measurements relevant to fatigue mechanism in materials

**Collective Avalanche Events** 



Time resolution to resolve dynamics of diffusionless transformations



Spear of martensite (low T phase) penetrating the austenite (high T phase) during transformation.

# Fluctuations in Strongly Correlated Materials

### Opportunity

- Competing order leads to frustrated ground states in strongly correlated materials
- Fluctuations between equivalent ground states provide fundamental information on the competing interactions in such materials and are relevant to their stability

#### Challenge

- Environments such as low temperatures and strong magnetic and electric fields thwart measurements
- Small samples and surface effects complicate experiments

#### **DLSR Strength**

- Access through complex sample environments and to bulk properties
- Rapid dynamics





# Fluctuations in Hierarchically Ordered Materials

#### Opportunity

- Hierarchically ordered materials can provide a suite of engineered functionality such as artificial photosynthesis, media separation and emulsion stability (oil recovery) but the activity and stability of such materials is key to their use
- Microscale structure and stability of permafrost regions has significant environmental and industrial impact
- Engineered jamming and unjamming to control optical properties and chemical activity

#### Challenge

- Dynamics over a broad span of timescales
- Dynamics in dense environments
  DLSR Strength
- Broad dynamic range

#### Particle Dynamics at Interfaces Engineered Functionality (a) Aggregated Domains (b) Ordered Lattice



Mixed Particle Size



(d) Mixed Particle Wettability



Controlled

Jamming

L. Dai et al., Scanning **30**, 87 (2008)



Thawing Permafrost

# Origin of Dynamics in Glassy Materials

#### Opportunity

- Hierarchical dynamic phenomena in glassy materials: colloidal suspensions, gels, nanoemulsions, polymers. Microscopic origin of high viscosity in glassy materials.
- Ability to probe both the alpha and the beta relaxation at the nanoscale

#### Challenge

- Limited coherent flux to access micro second time scales
- Limited coherent fraction to access nanometer length scales

#### **DLSR Strength**

• 100x brilliance will expand the accessible dynamic range to microseconds, enabling probing the full dynamic evolution and fast localized dynamics (beta relaxations)



# **Sub-Micron Flow Profiles**

#### Opportunity

- Measure flow velocity profiles with submicron spatial resolution. Nanometer flow profiles are important to understand dynamics in materials
- Demonstration experiment: studying velocity boundary conditions at fluid-solid interface

#### Challenge

 Limited coherent flux and coherent fraction to probe nanoscale dynamics

#### **DLSR Strength**

• Sub-micron focusing with increased coherent flux will enable probing faster velocities and/or smaller sample volumes such as in micro and nano-channels



samz (mm)

# Nanoscale Dynamics and Macroscale Rheology

#### Opportunity

- Linear and non-linear bulk rheology and its relation to nanoscale dynamics in complex fluids
- Shear induced velocity banding and flow instabilities in complex fluids
- Probe of stress relaxation at the nanoscale as manifested in the non-eq. dynamics

### Challenge

- Limited coherent fraction at high energies (20-30 keV) for environment penetration
- Limited coherent flux and coherent fraction to probe nanoscale dynamics at micro-second time scales

#### **DLSR Strength**

• High coherent fraction and coherent flux at high energies will enable probing real materials in real shear flow conditions



### Conclusions

- Modest improvements in 3<sup>rd</sup> generation SR's, XPCS detectors and beamline design are in line with XPCS SNR considerations and indicate many realizable future opportunities
- Suitable advanced 2-D detectors are absolutely required to utilize the gains provided by a DLSR
- Many science opportunities