

Some comments on dose, signal to noise, damage, and heating

Chris Jacobsen Argonne/Northwestern

DLSR workshop, Dec. 10, 2013

Signal to noise and required number of photons

• Simple photon statistics with known contrast:

$$SNR = \frac{Signal}{Noise} = \frac{\bar{n}|I_f - I_b|}{\sqrt{(\sqrt{\bar{n}I_f})^2 + (\sqrt{\bar{n}I_b})^2}} = \sqrt{\bar{n}}\frac{|I_f - I_b|}{\sqrt{I_f + I_b}} = \sqrt{\bar{n}}\Theta$$

where Θ =contrast parameter, I_f =intensity of feature, I_b =intensity of background.

• Thus required number of incident photons \overline{n} is

$$\bar{n} = \frac{\mathrm{SNR}^2}{\Theta^2}$$

- Example: 10 nm protein in ice at 520 eV via absorption contrast
 - Protein has linear absorption coefficient (LAC) of 1/9.900 μ m, so 10 nm has $I_f = \exp[-0.010/9.900] = 0.99899$
 - Ice has LAC of 0.717 μ m, so 10 nm has $I_b = \exp[-0.010/0.717] = 0.98615$
 - Contrast parameter is Θ=(.99899-.98615)/(.99899+.98615)^{1/2}=.00911
 - So with SNR=5 one requires $\overline{n}=(5)^2/(.00911)^2=3\times10^5$ incident photons
- See e.g., Sayre *et al.*, *Ultramicroscopy* 2, 337 (1977); Sayre *et al.*, *Science* 196, 1339 (1977)

Estimates of dose for 1 nm resolution imaging

Absorbed dose correlates well with damage across a wide spectrum of ionizing radiation. Example: VUV, e-beam, x-ray exposure of photoresists.

Comparison: TXM versus XDM

- TXM: assume zone plate with 20 nm outermost zone width (mean MTF ~20%), 10% efficiency. Net throughput: ~2%.
- XDM: assume 100% efficient detector.

TXM: transmission x-ray microscope

XDM: x-ray diffraction microscope

X. Huang et al., Optics Express 17, 13541 (2009)

SNR from unknown objects

- What if we don't know *I_f* and *I_b*?
- Let's say we have two noisy images I₁ and I₂, but we know they are of the same object.
- Calculate correlation *r*:

$$r = \frac{\langle (I_1 - \langle I_1 \rangle)(I_2 - \langle I_2 \rangle)^* \rangle}{\sqrt{\langle (I_1 - \langle I_1 \rangle)^2 \rangle \langle (I_2 - \langle I_2 \rangle)^2 \rangle}}$$

- We find $SNR = \sqrt{r/(1-r)}$
- Note: square root of expression of Frank and Al-Ali, Nature 256, 376 (1975)

Two simulated "cells" at 540 eV

Cell A: 0-500 nm random protein thickness Cell B: protein spheres, bars in ice (3D exit wave)

Fake "cells" via TXM and XDM

• XDM: assume perfect support

X. Huang et al., Optics Express 17, 13541 (2009)

SNR versus exposure: results

 TXM: net throughput ~2%, or 1/50. Expect SNR to be ~√50 or ~7 times lower.

X rays are better than electrons for thick bio specimens

- Electrons are better for <500 nm thick specimens
- X rays are better for whole cells

This plot: based on Jacobsen, Medenwaldt, and Williams, in X-ray Microscopy & Spectromicroscopy (Springer, 1998). See also Sayre et al., Science 196, 1339 (1977).

Another look at dose versus energy and ice thickness

easier with Born approximation

What's the limit for cells?

X-ray damage: Silicon in Silicon-on-insulator (SOI)

Non-recoverable fading of Si 008 diffraction peak in 140 nm thick SOI layer, using 11.2 keV X rays

Polvino, Murray, Kalenci, Noyan, Lai, and Cai, Appl. Phys. Lett. 92, 224105 (2008)

Muscle damage

- Images: dragonfly flight muscle, with Clara Franzini-Armstrong
- At 10⁴ Gray, myofibrils stop contracting in the presence of ATP.
 Bennett *et al.*, *J. Micros.* 172, 109 (1993)

Radiation damage resistance in cryo

Left: frozen hydrated image after exposing several regions to ~10¹⁰ Gray

Right: after warmup in microscope (eventually freeze-dried): holes indicate irradiated regions!

Maser *et al.*, *J. Micros.* **197**, 68 (2000)

7 μm

Radiation damage studies: poly (methyl methacrylate) or PMMA

Tinone *et al.*, *Appl. Surf. Sci.* **79**, 89 (1994)

Tinone *et al.*, *J. Electron Spect. Rel. Phen.* **80**, 117 (1996).

PMMA at room, LN2 temperature

- Beetz and Jacobsen, J. Synchrotron Radiation 10, 280 (2003)
- Repeated sequence: dose (small step size, long dwell time), spectrum (defocused beam)
- Images: dose region (small square) at end of sequence

Room temperature: mass loss immediately visible

LN2 temperature: no mass loss immediately visible

After warm-up: mass loss becomes visible

PMMA at LN2, room temperature: XANES spectra

- Peak at 531.4 eV: C=0 bond
- Plateau at 540 eV: total mass (plus some emphasis on oxygen σ^* bonds)
- Beetz and Jacobsen, J. Synchrotron Radiation 10, 280 (2003)

Cryo does not work miracles

LN₂ temp: protection against mass loss, but not against breaking bonds (at least C=0 bond in dry PMMA)

18

The Ramen noodle model of radiation damage

Macromolecular chains with no "encapsulating" matrix (dry, room temperature wet)

The Ramen noodle model of radiation damage

Macromolecular chains in an "encapsulating" matrix (frozen hydrated)

The Ramen noodle model of radiation damage

Actual noodles were harmed during the filming of this movie

Effects of 10⁵ photons in (10 nm)³

- With no cooling, the temperature rises due to absorption: $-H_20@500 \text{ eV} \Rightarrow 2300\text{K}$
 - $-H_20@3 \text{ keV} \Rightarrow 2200\text{K}$
 - $-Si@10 \text{ keV} \Rightarrow 7300\text{K}$
- In scanning microscopes, localized heating with a thermal reservoir. Photon flux for $\Delta T=1$ K in 10 nm wide spot with $r_2=100 \ \mu$ m:
 - H₂0@500 eV: 4×10¹⁰ photons/sec

Si@10 keV: 2×10¹² photons/sec

$$\Delta T = \frac{N}{t} \frac{h\nu \cdot \mu}{4\pi k} \left(1 + 2\ln\frac{r_2}{r_1}\right)$$

Greinke and Gölz, XRM 1991

Depth of focus in terms of zone plate/MLL Δ_{rN}

