

SPring-8 Upgrade Plan -from SP8 to SP8II-

Tetsuya Ishikawa

RIKEN SPring-8 Center Sayo, Hyogo 679-5148, Japan ishikawa@spring8.or.jp

09 December 2013 3rd DLSR Workshop @ SLAC, CA, USA

Upgrade Goal

Global Average Nano-Beam

Local Fluctuation

1000 m Bemline at SPring-8 *Coherent x-rays formed by 'propagation'*

Coherent X-Rays

Be Window Image at 1 km End-Station

Field of View 0.48 mm ×0.48 mm

Detector Resolution 480 nm

 $E = 16 \text{ keV} (\lambda \sim 78 \text{ pm})$

No Optics is the best Optics! Optical Component with X-ray Wavelength Precision

Mechanism of EEM (Elastic Emission Machining)

An ultraprecision machining process utilizing chemical reaction between surfaces of work and fine powders

Flow of ultrapure water

Work

Chemical reactions are induced between only top-site atoms of the work and fine powders

Automatic smoothing mechanism

7/28/03 Laboratory Review

Intensity distribution of reflected X-ray beam

Incident angle 1.2mrad / Mirror length 100mm / Mirror material Silicon single crystal (001)

7/28/03 Laboratory Review

2-stage focusing for creating smaller spot

Results

Mimura et al, submitted

~10²⁰ W/cm²

X-ray energy: 10keV

Design for single nanometer focusing (Prof. Yamauchi)

1.5

400

1.5

400

14.0

380

3.08~6.59

Glazing incidence angle(mrad)

Mirror length (mm)

Multilayer period (nm)

SPIE	2013	@Prague
------	------	----------------

13.2

100

3.29~7.17

Co-locates with SACLA Best Mixing of SR with XFEL applications Converting a Big 3rd generation source to DLSR

Photograph taken in May 2011

RIKEN SACLA

Japanese S&T Scene

Questions:

The most appropriate choice of emittance: Is smaller better for users?

What is the first priority for the Japanese users community?

3 GeV, Low Emittance Machine before SP8II and/or ERL

MBA Upgrade of SPring-8 to SPring-8-II

Boundary Conditions

- I) Use the existing accelerator tunnel
- 2) Retain the positions of straight sections
- 3) Short dark period (~I year)
- 4) Lower electric power consumption than now
- 5) ~ 100 pm.rad natural emittance
- 6) Retain the energy range covered by undulators
- 7) Smaller budget than SACLA (~400 M US\$)

Solutions (Details will be presented by Hitoshi)

- I) 5 Bend Achromat Lattice
- 2) 6 GeV, max 100 mA operation
- 3) Shorter period undulators

Basic Parameters

	SPring-8	SPring-8 II
Beam Energy (GeV)	8	6
Natural emittance w/o ID (pm.rad)	3400	142
Natural emittance w ID (pm.rad)		109
H-V coupling (%)	0.2	10
Beam current (mA)	100	100
RMS Bunch length (ps)	17	5.3
Horizontal beam size (um)	297.9	18.0
Horizontal divergence (urad)	12.3	5.5
Vertical beam size (um)	6.2	4.2
Vertical divergence (urad)	1.1	2.4
Undulator length (m)	4.5	3.6
Undulator period (mm)	32	18
Undulator period number	140	200

Brilliance

Beamline & Facility Upgrade in advance

- Beamline Stabilization
 - Use 1 km beamline to upgrade the stabilization of the optics
 - Install nano-fucusing optics in exsiting beamlines
- Replacement of Facility Cooling System (2013 stimulus budget)
 - Higher energy conversion efficiency
 - Towards lower operation cost

XFEL vs. SR

XFEL

- High peak brilliance with fs pulses
- Applicable for small, complex samples
- Measure-before-destroy
 - Sample will be damaged in single shot

SR

- High average brilliance w high rep rate
- Deliver x-rays to several tens beamlines
- Moderate peak intensity
 - Sample will not be damaged in single shot
 - Sample change can be traced
- Suitable for extracting information with correlation techniques (CT, time-course)

New regime of X-ray science

Towards diffractionlimited source Enhance brilliance

Concluding Remarks

- SPring-8 is proposing an MBA upgrade completed in 2020.
- 5 bend schromat is giving a appropriate solution for SPSH design to be realistic.
- Officially set up a design team headed by Hitosh/Taneka
- Beamline Upgrades in advance

