"Technologies"

Makina Yabashi (RIKEN SPring-8 Center) Christian Schroer (Technische Universität Dresden) Stefan Vogt (ANL) Chris Jacobsen (ANL/Northwestern Univ.) Linda Young (ANL) Gabriella Carini (SLAC) Dean Haeffner (APS) Anthony Warwick (ALS)

Photon technologies for DLSR

Makina YABASHI, Haruhiko OHASHI, Shunji GOTO, and Tetsuya ISHIKAWA RIKEN SPring-8 Center (RSC) yabashi@spring8.or.jp Dec 10, 2013 @SLAC

Contents

- 1. Basic parameters & performance
- 2. Technological challenges
 - 1. Stabilities
 - 2. Wavefront preservation
 - 3. Beamline concepts

Design Strategy of SPring-8 II

1. Reduction of emittance with keeping robust, stable operation

8 GeV -> 6 GeV, DBA -> 5BA, 3 nm.rad -> 100 pm.rad

2. Keep high photon energy range (smaller λ_{μ}) without energy gap (K_{max} ~2.3) $\lambda = \frac{\lambda_U}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$ $\frac{32 \, mm}{(8 \, GeV)^2} = \frac{18 \, mm}{(6 \, GeV)^2}$

$$\overline{(8 \, GeV)^2} = \overline{(6 \, GeV)^2}$$

Basic Parameters

	SPring-8	SPring-8 II
Beam Energy (GeV)	8	6
Natural emittance w/o ID (pm.rad)	3400	142
Natural emittance w ID (pm.rad)		109
H-V coupling (%)	0.2	10
Beam current (mA)	100	100
RMS Bunch length (ps)	17	5.3
Horizontal beam size (um)	297.9	18.0
Horizontal divergence (urad)	12.3	5.5
Vertical beam size (um)	6.2	4.2
Vertical divergence (urad)	1.1	2.4
Undulator length (m)	4.5	3.6
Undulator period (mm)	32	18
Undulator period number	140	200

Increase of coherent flux

Transverse coherence length

$$S_{\chi} = \frac{\lambda L}{2\pi\sigma_{\chi}}$$

@10 keV, 74 m from source

	SPring-8	SPring-8 II
Source size $\sigma_{\rm x}$ (um, rms)	298	18.2
Coherence length s _x (um, FWHM)	11.1	182
Beam size (um, FWHM)	2400	1200
Photon flux after aperture s_x (sec ⁻¹ w Si 111)	5e11	2e13
	X	40

Proportional to Brilliance

Available photon flux

Any merits for users who care only photon flux ? (rather than brilliance or coherence)

Reduction of horizontal emittance

- -> Smaller x-ray beam size
- -> Enables to decrease aperture size and heatload for optics
- -> Could enhance photon flux by increasing undulator periodic number (or stored current)

Comparison of X-ray spatial profiles and heat loads

Comparison of X-ray spatial profiles and heat loads

Comparison of available flux with fixed heat load

Challenges of X-ray optics for DLSR

Stability

(1) Removal of secondary source after DCM

Vibration of e-beam and x-ray optics in vertical direction (= deflection direction of DCM) should be sufficiently suppressed

Tolerance: $\delta_y \ll \frac{\sigma_y}{L} = \frac{10 \text{ um (FWHM)}}{70 \text{ m}} = 0.13 \text{ urad}$ (2) Stabilization of nano-focused beam Tolerance: $\delta \ll \frac{s}{L} = \frac{10 \text{ nm (FWHM)}}{0.1 \text{ m}} = 0.1 \text{ urad}$ Target stability: 10 nrad

Stability improvement of DCM (I)

Reduction of number of axis & range: tested at SACLA

H. Ohashi et al. NIM A710, 139 (2013)

Use large (90mm) Si crystals with small offset (20mm)

Stability improvement of DCM (II)

high-heat load issues @ SPring-8

Coolant flexible tube

Water cooling

Waviness inside tube \rightarrow Turbulence \rightarrow Vibration

Smoothing inside tube

for short term stability

Coolant flexible tube for LN

The vibration is reduced for wide range of flow rate

Coolant flexible tube for LN₂

for short term stability

PIN photo diode of 1kHz sampling as stepping $\Delta \theta 1$ of 1 urad in a 5 sec-interval

Precise temperature control in DCM

Temperature drift causes long-term instability

The photo around 1st crystal and the stage

Correlation between Temperature and X-ray intensity

Stability of x-ray intensity

Stability of DCMs with LN2 cooling is now comparable to those with water cooling

Dedicated experimental hutch for nano applications

Dedicated experimental hutch for nano applications

High precision temperature control

Focusing beam performances -100 nm probe- H. Yumoto (SPring-8)

Courtesy of Drs. Fons (AIST), Sekizawa (UEC), Suzuki (SPring-8)

Challenges of X-ray optics for DLSR

Stability & Precise control DLSR Wave-front preservation Concept

Speckle-free properties

Wavefront preservation: example at SACLA

Two plane mirrors + 3 Be windows (50 umt)

Mostly OK, but small speckles due to particle contamination are observable

Challenges of X-ray optics for DLSR

SACLA beamline

Tono et al, New J. Phys. **15**, 083035 (2013)

- 1. Switchable optical components for covering different band pass
- 2. X-ray diagnostics for stable machine operation

- Double mirror A; Double mirror B: Lower photon energy with wider b.w.
- Double-Crystal Monochromator: Higher photon energy with finer b.w.
- Fixed Exit design (20-mm offset) with exclusive utilization

Screen monitor

T. Kudo, K. Tono et al.

Si PIN photodiode (intensity measurement)

Ce:YAG plate (high sensitivity)

B-doped diamond film T>99% (10-um t) for HX Speckle-free

-> On-line monitor

Thin-foil monitor

Tono et al., RSI 82, 023108 (2011)

Collaboration with LCLS

Feedback with on-line photon diagnostics Intensity & Positional information: Used for correction of slow drift of e-beam parameters Suitable for compensating long-term drift of beam position Combine two monitors 1 um resolution, 50 m separation = 20 nrad

XFEL vs. DLSR

XFEL

- High peak brilliance with fs pulses
- Applicable for small, complex samples
- Measure-before-destroy
 - Sample will be damaged in single shot

DLSR

- High average brilliance w high rep rate
- Deliver x-rays to several tens beamlines
- Moderate peak intensity
 - Sample will not be damaged in single shot
 - Sample change can be traced
- Suitable for extracting information with correlation techniques (CT, time-course)

New regime of X-ray science

- Combinative development of S&T
- Identification of advantages

End