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E331 Science Motivation



E331 Science/Technical Goals

3

Science/Technical Goal Target Time Definition of Success
Evaluate methods for high-dimensional, high-quality 
control over beams using learned responses, starting 
with small-scale problems +  single-bunch mode

1-2 years Automated tuning of transverse emittance and longitudinal 
phase space: faster, higher-quality tuning than standard 
methods, new capabilities in control

High-quality control over extreme beams and plasma 
experiments

2-3 years Same as above but for more challenging setups/target 
beams

Deliver algorithms and interfaces for regular operation continual Tools incorporated into regular use + transitioned to 
operations

Main goal: develop and demonstrate 
methods to leverage global learned system 
responses to aid fast, high-quality tuning of 

beams under challenging conditions

(build up incrementally to machine-wide 
neural network-based reinforcement 

learning)



E331 Diagnostic and Observables
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• LPS diagnostics (e.g. injector + downstream TCAVs)

• Emittance measurements, x-y beam sizes from wires, transverse phase space from screens

• Upstream inputs: virtual cathode camera, QE map once available, laser diagnostics

• Readbacks from settings (gun solenoid, gun and linac phases/amplitudes etc)

• DAQ: ~150 scalar diagnostics (e.g. BPMs, toroids, RF readbacks, BLEN pyros) and multiple image diagnostics (SYAG, EOS, TCAV)

à Flexibility in E331 enables adaptation to installation / commissioning schedule for different diagnostics

Numerous diagnostics can be used to inform tuning or be used as tuning targets

= TCAVs
= Edge radiation cameras
= SYAG

= bunch length pyros

Similar 
diagnostic 

needs to E327



FY22 Progress to date - shift timeline
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• Shared beam time with E327 (see Claudio’s talk for details)
• Deployed initial software tools for measurements and optimization
• Characterized injector under different charge settings and laser parameters (1.8nC, 700 pC) 
• Tested new ML algorithms for efficient characterization and tuning (applied to injector emittance and IP spot size tuning) 
• Next steps: continue scaling up + use data gathered to move toward more comprehensive model-based approaches; 

incorporate TCAVs in tuning (once they are fully operationally ready)

TCAV

TCAV



E331 Progress: Practicalities and Infrastructure
• Thoroughly vetted adaptive emittance 

measurement method for use in automated 
emittance optimization (PyEmittance) 
https://github.com/slaclab/PyEmittance

• Integrated DAQ for beam synchronous
acquisition into python code for emittance 
measurements

• Obtained access to a Rhel7-compatible 
machine for control system à necessary for 
cutting-edge algorithm testing

• Integrated Xopt into FACET-II control 
systemà aids algorithm transfer between 
systems and will make it easy to test new 
algorithms on FACET-II

• Deployed online LUME-IMPACT model of 
injector (live reading from machine and 
making predictions) à particle-in-cell code 
includes space charge, uses VCC image to 
automatically create initial particle distribution

FACET-II Injector model 
running online using 

LUME-IMPACT

Xopt running on FACET-II for easy ML algorithm 
deployment on different tuning problems

https://www.lume.science/

Adaptive quad scan emittance 
measurement deployed for robust 

measurements

https://github.com/slaclab/PyEmittance
https://www.lume.science/


E331 Progress: ML for Efficient Characterization 
Better Data Sampling:
Bayesian Exploration

adaptive sampling

learning 
constraints

proximal
biasing

R. Roussel et. al. 
Nat. Comm. 2021
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Enables sample-efficient 
characterization of high-dimensional 
spaces, while respecting both input 

and output constraints

Enables sample-efficient 
characterization of high-dimensional 

spaces, while respecting both input and 
output constraints



E331 Progress: ML for Efficient Characterization 

• Used Bayesian Exploration for efficient high-dimensional characterization (10 
variables) of emittance and match at 700pC: 2 hrs for 10 variables compared 
to 5 hrs for 4 variables with N-D parameter scan

• Data was used to train neural network model of injector response predicting x-
y beam images. GP ML model from exploration predicts emittance and match.

• Example of integrated cycle between characterization, modeling, and 
optimization à now want to extend to larger system sections and new setups

Use of Bayesian exploration to generate training data was sample-efficient, reduced burden of data cleaning, and resulted in a well-
balanced distribution for the training data set over the input space. ML models were immediately useful for optimization.
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Automatic Exploration
(constrained to useful values 

of emittance and match)

ML Models of Injector

Setting changes on 10 variables (solenoid, bucking coil, corrector and matching quads)

x-y emit, 
match, 
and 
beam 
images

FACET-II Injector



E331 Progress: Bayesian Optimization and Characterization of Injector
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• Demonstrations of Bayesian optimization on the injector with up to 10 variables 
• Extensive data obtained from characterization studies at 2nC and 700pC
• ML models from data give insight into machine behavior à still exploring this extensively
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outputs)



E331 Progress: 
Efficient Emittance Optimization with Partial Measurements
• Instead of tuning on costly emittance measurements directly, learn a fast-executing model online for beam size while optimizing 
• Demonstrated new algorithmic paradigm leveraging ”Bayesian Algorithm Execution” (BAX) for 20x speedup in tuningà learn on direct observables (e.g.

beam size); do inferred “measurements” (e.g. emittance) much more quickly on the model than would be possible on the machine

simulation

experiment

New method demonstrated at FACET-II has 20x speed improvement over standard emittance optimization method. Paradigm shift in 
how tuning on indirectly computed beam measurements (such as emittance) is done.

model is learned
on-the-fly

Convergence of beam size prediction error 
gives practical indicator of optimization 

convergence (no need to do direct emittance 
measurement until the end)

Found equivalent quality to hand-
tuning in about 70 iterations (just a few
minutes with computationally optimized 

routine)

https://arxiv.org/abs/2209.04587

https://arxiv.org/abs/2209.04587


• Ran constrained Bayesian optimization on the 
sextupole movers (8 variables total) to minimize spot 
size as measured on the wires in S20

• Recorded auxiliary data (TCAV and EOS, BSA)

• First step toward more comprehensive tuning in S20

• Used software, Xopt, established for previous runs 
with little need for adjustment to this specific 
problem à nice demonstration of extensibility

E331 Progress: Optimization of Sextupoles for Performance at IP

Automatically tuned for a small, round beam at the IP using sextupole movers. Ready for next steps in tuning both IPs and with 
broader set of variables.

Next:
• Want to use on both IPs (with multi-objective optimization) and use greater number of variables
• Use data to inform faster subsequent optimization (demonstrated in simulation on a different problem)



Potential evolution of experiment
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• Next steps: 
- Continue scaling up for combined injector + downstream tuning
- Use data gathered to move toward more comprehensive model-based approaches 

(neural network prior mean, reinforcement learning)
- Incorporate TCAVs in tuning for longitudinal phase space (once fully operationally 

ready); initial demos in sim and on other systems done

• New task: simultaneous optimization of the beam spot at both IPs (adjusting sextupole
movers and other variables in S20)

• Farther future:
- PWFA optimization
• Reduction of beam jitter (synergy with E325 + E327)
• LPS tuning/control in conjunction with PWFA diagnostics (synergy with E325 + E327)
• Can leverage virtual diagnostic from E327 as additional tuning output

- ML aided LPS shaping with the laser heater (synergy with E325 + E327)



Desired facility upgrades
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• TCAV desired upgrades same as for E327:
- S14 and S10 TCAVs operational
- S20 TCAV resolution optimized (increased voltage, optimized optics)

• Computing
- Rhel7 upgrade to control system (right now using a single test box)
- GPU integration into compute resources

• Laser heater à would like to have screens rather than needing to rely on 
wires (full distribution, faster measurements)



Synergies between ML experiments (as of last PAC)



Backup Slides
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Collaboration
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• SLAC: A. Edelen, C. Emma, R. Roussel, B. 
O’Shea, S. Miskovich, W. Neiswanger, G. 
White, S. Gessner, C. Mayes, D. Ratner

• LANL: A. Scheinker
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Landscape of AI/ML Activities at FACET-II
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Synergistic experiments, individual success enhances all research + facility operation

E326 E327 E327 E325

E325 E331








