FACET Experimental Laser(s)

FACET-II PAC Meeting 2022

Brendan O'Shea / Lead Scientist / AARD October 25-27, 2022

Facility for Advanced Accelerator Experimental Tests

> Stanford University

Outline

- Experimental Laser Overview
 - Present performance
 - Upgrades since PAC 2020
 - Link to 2020 talk
- Experimental Laser Tunnel Overview
- Experimental Laser "main laser"
 - Compressor and Picnic Basket
- Experimental Laser "probe laser"
 - EOS
 - Shadowgraphy
 - Ionizer

Present and optimal performance

Function	Present	No Major Upgrades	How do we do better?
Power-amp Pump [J]	2.2	2.6	Can turn up lamps, but not tested
Power-amp Output [J]	0.7	0.8	
Beam Transport Input [J]	0.7	0.7	
Compressor Input [J](beam transport output)	0.6	0.6	
Minimum Beam Size @ Compressor [radius, cm]	2.0	1.7	
Pulse Length Before Compression [ps] [FWHM]	150.0	150.0	
Compressor Output [J]	0.36	0.44	
Pulse Duration after compression (fwhm) [fs]	55.0	40.0	Spectrum says we should be good. Need to build compressor in laser room
Peak Power [TW]	6.6	11.1	
Intensity* [10 ¹⁸ W/cm^2]	44.1	73.5	
a0*	4.5	5.8	

FACET-II – Before DM **Upgrades since PAC 2020** 400 • Removed all but two windows 450 (Pixel) (Pixel) FACET 550 500 550 (Pixel) 750 650 700x (Pixel) FACET-II – After DM 600 650 750 800 850 900 x (Pixel) .(Pixi 220 > 600 650 700 750 800

- Previous source of astigmatism

- Replaced all lenses with high quality optics
- Rebuilt safety attenuator
 - Previous provided different wavefronts for building vs running experiments
- Active alignment system (17) cameras)
 - Reduces sensitivity to temperature/humidity changes
- Improved SAGA flashlamp lifetimes
- Installed deformable mirror

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

900

850

850

x (Pixel)

900

800

There is still work to do

- Laser Room Compressor
 - Want to optimize/test in the laser room, much easier than the tunnel
- Spatial Filter
- Image SAGA pump lasers to the crystal in the MPA
- Develop method for pulse dropping
 - Automate on/off shots for backgrounds/controls
- Make windows thinner for probe
- All total, work list is about a year long

FACET-II Experimental Laser(s)

Experimental Laser – probe laser

- EOS BPM: Laser and e-beam timing and e-beam positioning
- Shadowgraphy: Gas-jet shadowgraphy probe
- Ionizer: Transverse laser beam ionizing the gas jet
- E324: Lithium oven probe

• OAPs (E320)

- Axicon (E300)
- Axilens (E305)
- Tandem Optic (E301)

Probe Laser

Probe Laser

EOS + Shadowgraphy + Ionizer

• Axilens ionized gas jet lensing • Low and high gas jet the electron beam resolution Plasma Lens (long gas jet) Shadowgraphy are working Y (mm) 0 Laser-ionized • Fourier plane is a plasma trace -2 future upgrade 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0 E305 E308 Z (mm) Reference Image, $\theta = -2.69 \text{ deg}$ Reference Image, $\theta = -2.69 \text{ deg}$ • EOS working – everyone uses it 35000 data fit ($\mu = 103.8 \pm 0.1$, $\sigma = 3.2 \pm 0.1$) 50 18 fs/pixel calibration 30000 100 -Signal (arb. units) 00000 00000 - 52 fs shot-to-shot jitter 150 -200 Next step is to add a second 250 crystal and try to measure beam 15000 300 position. 350 10000 C. Hansel 100 150 200 250 50 50 100 150 200 250 SLAC FACET-II PAC Meeting, October 25-27 B. O'Shea FACET-II Experimental Laser(s) 11

Summary

- One laser, five laser lines
 - Main laser can run three experiments, one at a time, remotely switching between them
 - Probe laser runs 4 systems simultaneously
- Rebuilt all the capacity of FACET and:
 - Improved repeatability
 - Improved reliability
 - Pushing to peak performance
- Working on pulse length, laser room space to test optics, spatial filter, pump laser imaging and much more
 - Over a year of work
 - Science goals drive how this work is prioritized