

E-300 FY22 Progress and Plans for FY23

Energy Doubling (10-20+ GeV) with <1% Energy Spread, Pump Depletion and > 40% Pump to trailing bunch energy transfer efficiency, while minimizing emittance growth

Chan Joshi (UCLA) and Mark Hogan (SLAC) P.I.s

C Joshi, E Adli, W An, CE Clayton, S Corde, S Gessner, MJ Hogan, et al., Plasma wakefield acceleration experiments at FACET II Plasma Physics and Controlled Fusion 60 (3), 034001

Work supported by DOE-HEP

What are the science goals: definition of success and target time for each goal (from the last PAC meeting)

The Grand Science Goal is to reach the beam parameters needed of a single stage of a future linear collider as far as FACET II infrastructure will allow.

1 Significant energy depletion of the drive bunch	
with bulk of the particles fully energy depleted	Year 1
2 Efficient (>30%)energy extraction from the wake by	
the trailing bunch while close to doubling it's energy	Year 1 and 2
3Understand the conditions for optimum beam loading	
to minimize the energy spread	Year 2
4 Understand and optimize the beam matching for	
emittance preservation at 10 micron or less level	Year 2 and 3
5 Quantify the extent of transverse BBU or hosing instability	Year 3
6 Perform preliminary experiments for next set of pressing issues	Year 3

UCLA

Experimental timeline: First E 300 Experimental run

UCLA

Commissioning diagnostics: (throughout the year)	T-CAV, EOS for bunch length and bunch separation measurements S-YAG and DT-OTR screens for details of the longitudinal phase space Quad-scan and butterfly techniques for slice & projected emittance Wire-scanner for focused spot size >20um 3 side view ports with cameras to visualize the plasma Minimizing Betatron yield as diagnostic of beam matching Torroid to measure charge, BPMs to set beam orbit, OTR screens for beam profile
Li Plasma and differential pumping	LI oven with a bypass-line was installed A 4m sect ion of the experimental area isolated from the high vacuum two xx um Be windows A differential pumping is installed, partially tested and almost ready to go The Be windows sustained significant damage/ not catastrophic failure Another unforeseen issue – oven floating was noticed (It can be fixed but limited access during LCLS operation made the fix impossible to schedule without loss of crucial experimental time)
Beam Ionized H and He & Wake generation June-Sept	 Simplest solution was fill the bypass tube with H₂ /He and try ionizing the gas with a 25 (um)³ electron beam. Useful information obtained need for a laser heater to remove longitudinal current spikes in the beam, preionized H or beam- ionized Li plasma is needed to move forward. Approximately 16, 8 hour shifts were devoted to these studies. Obtained experience and data

Red: Development needed

Experimental layout and diagnostics

<figure><figure>

butterfly

Charge	torroids, spectrometer	
Emittance	Quad-scan and butterfly	
Beam matching	Minimizing betatron radiatior	
Separation	T-CAV and EOS	
Bunch length	T-CAV and EOS	
Spot size	Wire scanners	
Energy gain/loss /spread Spectrometer		

UCLA

Progress to-date: What did E300 collaboration achieve in Yr 1?

- 1 Diagnostic readiness
- 2 Facility development specific to E300, differential pumping system, imaging spectrometer with two different field of view, ability to field Li plasma source as well as laser-preformed H plasma
- 3 During beam transport to the dump the Be windows on either side of the Li source were damaged

4 The Li oven was moved transversely and the gas fill tube was filled with H to explore if H could be beam ionized as a means of determining the beam brightness.

5 A 2 m long plasma could be formed in H, wakes formed in H and He . Energy loss down to <1 GeV and energy gain of up to 5 GeV could be observed at 2 torr or $6x10^{16}$ cm⁻³ plasma .

6 A new model based on experimental observations is able to explain the ionization of ,He, energy loss, energy gain and betatron oscillations data.

Separate the unaffected (at 10 GeV) and the decelerated part

No charge loss in transporting dispersed beam to spectrometer

Unaffected fraction distribution (1.0 Torr)

Beam-to-wake energy transfer efficiency vs. backing pressure

- ~7 J energy was deposited into the plasma for the highest pressure 2.0 Torr
- This corresponds to a beam-to-wake efficiency of ~70% (corrected: 7J/(15J*2/3), or : 7J/10 J)
- Data agrees with the fit: $E = Ap^{1/2} + B$ implies that
 - same plasma length
 - deposited energy $\propto E_{\rm dec} \propto n_e^{1/2} \propto p^{1/2}$, therefore same ionization fraction for these pressures
 - same ionization fraction for different pressure —> most likely 100% ionization? (Zan will talk about the ionization physics)

Fraction of unaffected charge depends on location of the current spike

Molecular PPT theory identifies likely pathway of H₂-ionization

Modeled new beam current profile

Excellent agreement between simulations and experimental energy loss, gain and betatron oscillations oscillations

At 1.8 torr we see acceleration of tail particles out to 4 GeV UCLA

Dataset E300_02813: 1.8 Torr H2. Quads re-image beam vacuum waist (at FILS) at 10 GeV. Dipole at 10 GeV.

Modeled beam current profile for He case

Х

Conclusions: What's next?

If there is a significant chunk of time available before year's end spend it on

- 1 Laser heater to get rid of mico-structures in the current bunch
- 2 Improve the emittance diagnostics to validate the beam emittance without the plasma and measure emittance growth of the decelerated electrons.
- 3 Get a good correlation between EOS and T-CAV so we have an online bunch separation diagnostic. Ressurect the old pyro (C-CTR) diagnostic as a relative measure of bunch duration.
- 3 Get the differential pumping operational
- 4 Try out the laser preionization of hydrogen with and without Be windows as a plasma source.
- 5 Try out the wake excitation work again to see if we can get > 80% energy
- transfer from the beam to the wake with < 5% unaffected charge.

Next year 2023

6 If laser preionization of hydrogen runs into problems fix the floating oven with differential pumping.