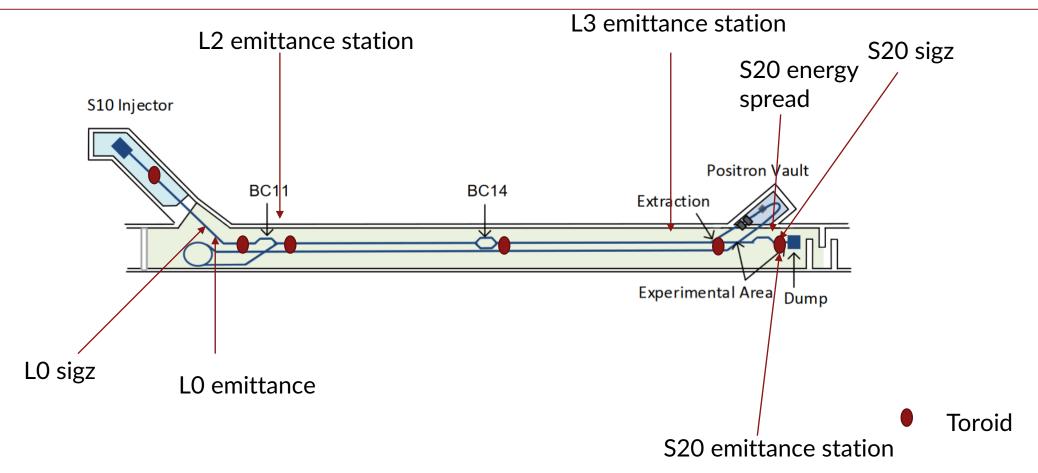

Outline

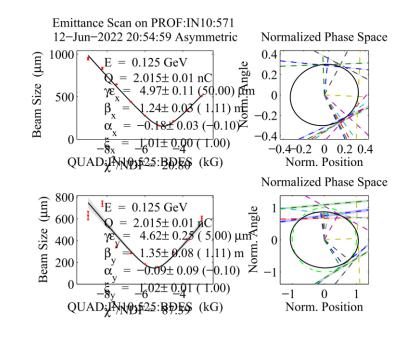
- KPPs
- FY22 Parameters
- Selected Machine Development
- Improvements to Beam Delivery
- Expected FY23 Run Parameters


Objective KPP

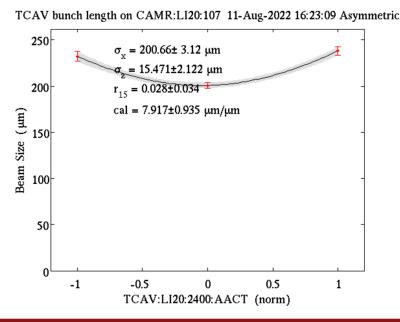
- 10GeV energy through S20 chicane
- 2nC charge
 - 3.4nC achieved in MD
- 20um L3 linac emittance
 - Sub-10um emittance achieved regularly
- 20um IP bunch length
 - Sub-15um bunch length achieved regularly
- Not all parameters can be pushed simultaneously, e.g.
 - Pushing energy up reduces available compression
 - Higher charge produces more beam loading reducing both highest energy and peak compression in addition to complicating wakefield emittance compensation in the linac

Objective KPP met

Diagnostics



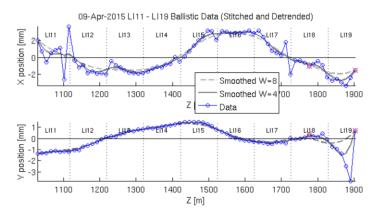
- Bunch length measurements performed with transverse deflecting cavities
- L0 emittance measurement performed with screen
- L3 & S20 emittance measurements performed with wires


FY22 Parameters

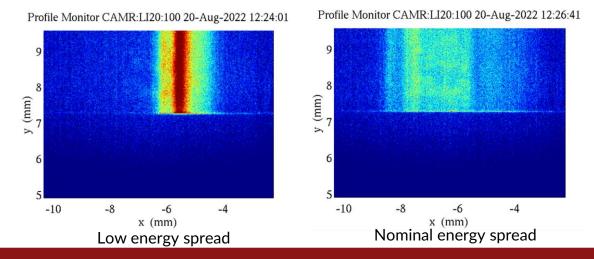
- QE 1.2e-4 after wavelength change, mirror replacement, laser cleaning
- 5um emittance in injector
 - Very consistent
- 6um emittance at L2
 - Stability issues
- 10um emittance at L3
 - Stability issues
- 20um bunch length in S20
 - Stability issues
- 1.6nC typical charge
 - 1.6nC very stable, sufficient for User activities FY22

Typical Injector Emittance

S20 XTCAV Bunch Length Measurement



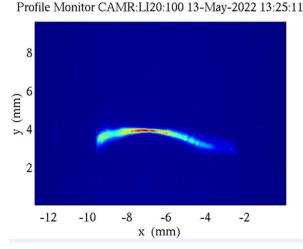
Parameters from the FY22 run

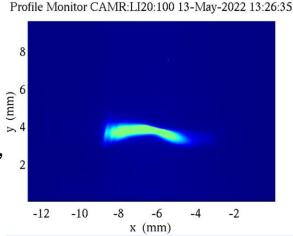


Selected Machine Development

- Ballistic Beam Alignment
 - Smooth discontinuities in linac for better emittance preservation
- S20 IP and Spectrometer Beam Based Alignment
- RF and Magnet Stability
 - Hardware stability contributed to variation in deliverable beam parameters
- 2nC Machine Stability
- Configuration Switching
 - Develop consistent, quick configuration changes between beams with differing compression profiles

2015 FACET ballistic beam alignment example


Selected MD's will improve reliability and consistency of beam delivery


Improvements to Beam Delivery

- Laser Heater (see Carsten's/Glen's talks)
- Two-bunch Commissioning (see Glen's talk)
 - Will allow for drive and witness bunch through linac rather than collimation with the notch in \$20
 - Will also recommission notch-collimator
- Injector Emittance Optimization
 - 10deg Schottky phase is FACET-II design and will provide best injector emittance
 - FY22 initially ran at 30deg Schottky phase to allow more charge overhead when QE was low, but stayed there since injector emittance sufficient (<5um)
- L1 LLRF Upgrade
 - Significantly improve stability of delivered beams

Microbunching observed on beam at SYAG

Upstream profile monitor inserted:
Suppresses micro-bunching, but blows up emittance

These tasks will improve the capability of beam delivery

Expected FY23 Single Bunch Parameters

- 500pC to 2nC charge
 - MDs to investigate RF and DC magnet stability, tuning techniques for higher charge, configuration switching/development
- 4um gun emittance
 - Gun emittance has been stably reproducible at 4-5um
 - Further improvement expected after spending time developing 10deg Schottky phase configuration
- 8um linac emittance
 - Focus this run will be to maintain the consistency of L3 linac emittance rather than push the minimum size down
- 10um-100um bunch length
 - Focus will be reproducibility and stability
- 9GeV to 11GeV energy
 - Long term project to increase klystron availability in L3

Improvements in stability and capability will enable better, more consistent beam quality

Summary

- Objective KPP of 2nC, 10GeV, <20um linac emittance established during FY22 run
- New hardware will extend the capabilities of the FACET-II accelerator for User Delivery, e.g., two-bunch, laser heater, etc.
- Machine Development shifts will focus on improving stability and reproducibility