

Experiment Requirements

- Diagnostic needs determined through weekly "Particle and Gamma Detection" working group meetings.
- Gamma spectrums generated for each experiment to determine regions of interest and experimental requirements.
- Diagnostics developed in collaboration with users to accommodate common requirements and to distribute tasks.

	DTOTR	LFOV	CHER	G1	G2	G3	1-30 KeV Bent Crystal	30-500 KeV Bent Crystal	0.5-30 MeV Compton	0.001-10 Gev Compton+Pair
E300 – Two Bunch PWFA	Y	Y	Y	Y	HD	HD	0	HD	0	N
E302 – PWFA Wakefield	Y	Y	Y	Y	HD	HD	0	HD	0	Ν
E305 – Filamentation	Y	Y	Y	Y	Y	Y	0	HD	Y	HD
E310 – TH-II	Y	Y	Y	Y	0	0	RF		Ν	Ν
E320 – SFQED	Y	Y	Y	Y	Y	Y	N		HD	RF
E324 – Imaging	Y	Y	Y	Y	Ν	Ν	Ν	Ν	Ν	Ν
Y = "Required for beam time"	N = "Not us	eful" R	RF = "Required for final run"			O = "Optional, but useful"		HD = "Not required for initial run, but highly desired"		

-SLAC

Rebuilt FACET-II Experimental Area & Spectrometer

Doug Storey - Spectrometer Diagnostics - FACET-II PAC, October 26-29, 2020

Doug Storey – Spectrometer Diagnostics – FACET-II PAC, October 26-29, 2020

Electron diagnostics: DTOTR

Purpose: High resolution in-vacuum electron OTR profile monitor

Main uses:

- Primary post-IP emittance diagnostic
- LPS measurements with TCAV

Specifications:

- Screen: YAG or polished titanium plate for OTR
- Camera: PCO Edge5.5 w. Nikon 200mm f/4
- Field of View: 7mm x 8.4mm (±30mm)
- Energy Range: ~2 GeV FOV (E-300)
- Resolution: 4.5 μ m imaging \rightarrow 0.01% energy res.
- DTOTR2 is a complimentary large FOV alternative

DTOTR Emittance Diagnostic

 $\sigma_{\rm X}$ [µm]

Width,

Beam '

Butterfly emittance measurement

- Single shot measurement of the projected emittance down to the scale of ~1 mm-mrad
- **Resolution:** <5% emittance resolution for measuring matched beams at plasma exit
- Limitations: Phase mismatch, existing correlations can impact the measurement

Dispersive quad scan emittance measurement

- Multi-shot emittance measurement using a quad scan
- Resolution: Good resolution, useful for low energy spread beams, provides info on matching condition
- Limitations: Relies on beam stability

New high resolution diagnostics support sub-um precision measurements of µm scale emittances

Doug Storey – Spectrometer Diagnostics – FACET-II PAC, October 26-29, 2020

Butterfly Fit Result Emittance Measurement Resolution 100 25 \bigcirc $\beta_{IP} = 5$ cm, $\Delta E = 0.5\%$, $\sigma_{OptRes} = 4 \mu m$ [%] 20 Ioura 15 80 $-\beta_{IP} = 5$ cm, $\Delta E = 0.2\%$, $\sigma_{OptRes} = 4 \mu m$ $-\beta_{IP} = 10$ cm, $\Delta E = 0.5\%$, $\sigma_{OptRes} = 4 \mu m$ 60 $-\beta_{ID} = 5$ cm, $\Delta E = 0.5\%$, $\sigma_{OptRes} = 8 \mu m$ Measurement 40 Starting emittance 20 **Input:** $\epsilon_n = 19.4 \,\mu\text{m}$ $\beta = 4.0 \,\text{cm}$ **Fit:** $\epsilon_n = 19.5 \,\mu\text{m} \,\beta = 3.9 \,\text{cm}$

Sample Butterfly Measurement

Electron diagnostics: LFOV and CHER

LFOV – Large field of view profile monitor

Specifications:

- Screen and camera:
- Field of view:
- Imaging resolution:
- Energy Range:
- Minimum detectable charge:

CHER - Electron spectrometer

Specifications:

- Screen and cameras:
- Camera:
- Field of view:
- Imaging resolution:
- Energy Range:
- Energy resolution:

Cherenkov light from 5cm gap PCO Edge w. Nikon 600mm f/4 5 x 16 cm FOV ~230 µm ~5 to 24 GeV 0.4%

General purpose electron diagnostics available to all experimental users that remains mostly unchanged from FACET

Doug Storey - Spectrometer Diagnostics - FACET-II PAC, October 26-29, 2020

DRZ Fine + Orca Flash 10cm x 30cm ~150 μ m (pixel size) Down to ~5 GeV 1×10⁻⁵ pC/pixel (with SNR>10)

Gamma diagnostics: Gamma1

- **Gamma1** Photon profile monitor
 - Photon integrated signal:
 - PWFA: Correlated with beam matching dynamics
 - Spatio-temporal alignment
 - Photon angular distribution: •
 - PWFA: e^{-} beam x-y symmetry and trailing beam offsets.

0.2

0.18

≧0.16

0.14

0.12

0.1

0.08

: : : : : 0.05

0.1

Trailing focal plane position [m]

0.15

E320 - SFQED: a₀ value.

Specifications:

- Screen: CsI Array or DRZ-Fine
- Orca Flash w. Nikon 50mm f/1.4 lens Camera:
- Field of View: 10cm x 10cm
- 0.5 x 0.5mm² CsI pixel size (20 µrad) Resolution: 50 µm imaging pixel size (2 µrad)

0.4 _0

0.3 7

0.2

SLAC

 $\Delta x = 7 \ \mu m$

0 0_ (mrad)

Credit: P. San Miguel Claveria - LOA

Gamma diagnostics: Gamma2/3

Gamma2 and Gamma3 – 10keV-100MeV spectral measurements

- DRZ screens located downstream of a set of step filters and one Ross pair arranged in a "camembert" filter wheel.
 - Gamma2 measures conversion rates
 - Gamma3 measures transmission rates

Analysis:

- Image intensity behind each filter material varies with the spectral content of the incident gammas
- Comparison to GEANT4 simulations provide an estimate of the corresponding critical frequency
- Example shown for analysis of E300 PWFA case:

Gamma diagnostics at the dump table provide robust intensity and spectral information

Doug Storey – Spectrometer Diagnostics – FACET-II PAC, October 26-29, 2020

Positron and Electron Detection Chambers

- Multi-use vacuum chambers to allow for detection of low energy electrons and positrons
 - Reconfigurable chamber walls for maximum flexibility
 - Maintains the current electron and gamma apertures
- Diagnostics being developed by members of the E-320 collaboration
 - ~2-6 GeV positron tracking detectors
 - Positron calorimeter
 - ~2-8 GeV electron profile monitor

Provides simultaneous single-particle detection of positrons and low energy electron detection, complimentary to the dump table diagnostics

Doug Storey – Spectrometer Diagnostics – FACET-II PAC, October 26-29, 2020

Final Focus and Spectrometer rebuild

-SLAC

Configuration for experimental area for commissioning:

Final FACET-II configuration:

Experimental area rebuild:

- 1) IP equipment install:
- 2) Final Focus quad reconfiguration:
- 3) XTCAV rotated and moved from BC20:
- 4) Spectrometer doublet to triplet:
- 5) PDC and EDC chambers:
- 6) Differential Pumping System:

Status and timeline:

6

Complete vacuum to dump now, fully instrumented Dec./Jan. Parts are being collected. Rebuild in January

5

Spring/Summer 2021

Parts are being collected. Rebuild starting December

Chamber fabrication nearing completion. Install in January

Beamline parts to be installed in January, pumps by Feb/March

- Spectrometer diagnostics have been developed and implemented in collaboration with the experimental users
- The Dump Table will be ready to receive beam by the end of the week
- New diagnostic capabilities are being added though the installation of significant new hardware to come online in early 2021

Present Dump Table Installation

Backups

Butterfly Emittance Diagnostic - DTOTR

DTOTR1 specs:

- Screen: YAG or polished titanium plate for OTR
- Camera: PCO Edge5.5 w. Nikon Nikkor 200mm f/4
- Field of View: 7mm x 8.4mm (±30mm)
- Resolution: 4.5 μ m imaging \rightarrow 0.01% energy resolution

Butterfly emittance measurement

• Single shot emittance measurement – use fit to get ϵ_n and β

$$\left(\sigma_{x}(\delta)\right)^{2} = \frac{\epsilon_{n}}{\gamma_{b}} \left[M_{11}(\delta)^{2} \beta_{0} - 2M_{11}(\delta)M_{12}(\delta)\alpha_{0} + M_{12}(\delta)^{2} \left(\frac{1+\alpha_{0}^{2}}{\beta_{0}}\right) \right]$$

- **Resolution:** <5% emittance resolution, for measuring matched beams at plasma exit
- Limitations: Phase mismatch, existing correlations in the beam properties

Dispersive Quad Scan Emittance Measurement

Plasma Exit - Mismatched 150 Input at 18.44 GeV: $\epsilon_n = 18.4 \,\mu\text{m}$ $\beta = 9.6 \,\text{cm}$ Fit at 18.44 GeV: $\epsilon_n = 21.6 \,\mu\text{m}$ $\beta = 9.4 \,\text{cm}$ 50 0 -1 -0.5 0 0.5 1 M₁₂ [m] This is a multi-shot measurement that can be used as an alternative to the butterfly measurement:

- Scan the spectrometer quads to scan over R₁₂ and image the beam on DTOTR1
- Fit the beam width at a single energy using M₁₂ and M₁₁:

$$(\sigma_x(M_{12}))^2 = \frac{\epsilon_n}{\gamma_b} \left[M_{11}^2 \beta_0 - 2M_{11}M_{12}\alpha_0 + M_{12}^2 \left(\frac{1 + \alpha_0^2}{\beta_0} \right) \right]$$

Key points:

- Can determine the $\epsilon_n(E)$ and $\beta(E)$
 - ightarrow provides information on matching condition
- Useful during beam commissioning for low energy spread beams, and cross-checking the butterfly emittance measurement
- Main limitation: relies on beam stability

Compton Spectrometer (UCLA)

- Optional positron readout to subtract pair background from Compton spectrum.
- Sextupole design allows compact spectrometer with high dynamic range.
 Lengths scale with cube root of electron momenta.

Slide courtesy of B. Naranjo, UCLA

15

OTR PSF

For case of:

- 50mm aperture at 200mm FD
- 10 GeV
- 500nm light
- Normal diffraction resolution of ~1.5 um
- OTR PSF is donut-like
 - Width on order of: 2-3 um
 - Less than pixel size

 \rightarrow resolution is still dominated by pixel size, not PSF

