

Sector S20 Experimental Laser

October 26-29, 2020

Brendan O'Shea AARD Staff Scientist

FACET-II Experimental Laser Requirement

Parameter	Range	Units
Energy	30-AHAP	mJ
Duration	40	fs fwhm

Oscillator -> Regen -> MPA ->MPA

- First three laser are a common SLAC platform
- 20 m transport from laser room to tunnel
 - Through 3 temperature zones
- Serves 20+ Experiments
 - Laser split in two in tunnel to generate 'probe' beam
 - 'probe' beam then split in 4
- e-beam / laser stability of <100 fs rms
 - e-beam + laser 'collide'

simultaneously in 5 locations in IP area

Experimental laser configured to meet diverse scientific needs

Current and Expected Performance

Function	Goal	Limits? Why?
Upgrades	Deformable Mirror Transport	
Power-amp Pump [J]	2.6	
Power-amp Output [J]	0.8	30% from pump to output
Beam Transport Input [J]	0.7	90% Expected due to polarizer
Compressor Input [J](beam transport output)	0.6	65% measured at FACET 90% Expected from transport input to compressor (11 optics @ 99% 21 optics at 99.5%)
Minimum Beam Size @ Compressor [radius, cm]	1.7	Set by gratings damage threshold 1.8 J@ 6 cm max input measured at MEC 8" gratings required for 60 mm beams
Pulse Length Before Compression [ps] [FWHM]	150.0	Set by B Integral in amplifier crystal \DeltaB < ?
Compressor Output [J]	0.44	65% measured at FACET 70% expected
Pulse Duration after compression (fwhm) [fs]	40.0	<40 fs requires spectral shaping Measured after regen
Peak Power [TW]	11.1	
Intensity* [10 ¹⁸ W/cm^2]	73.5	3 um focus
a0*	5.8	3 um focus

Well characterized stable operations are quantified and prioritized

SLAC

Upgrades, Features and Capabilities

- Only 1 window (FACET had...8?)
 - Source of a lot of aberrations in the beam at FACET
- Closed loop wavefront correction in Laser Room
- Open loop wavefront optimization in tunnel
- Energy Control (Waveplate + polarizer)
- Online laser "health" monitor
- Upgrade HVAC system
- Active monitoring of pointing through gallery transport
 - Source of majority of laser drift at FACET
 - So far have demonstrated 20x reduction in drift

Upgrades following FACET experience will address more demanding needs from the FACET-II User Program

Timeline to develop capabilities

SLAC

	Oct 2020		Nov 2020		Dec 2020		Jan 2021	Feb 2021
S20 Vacuum Work								
SAGAs								
S20 Optics Rebuild (including DM)					Me	asure li	nput into Transpoi	ť
Experimental Area laser vacuum work								
<i>Compressor Install/ Alignment</i>	Ν	Measu	ire Compi	ressor C	Dutp <mark>ut </mark>	ے ج	Liser Checks S	tart
Experimental Area Optics Install								
Experimental Area Optics Alignment								
Transport Alignment Testing								•
Checkout DM in Experimental Area					Ν	Aeasure	e smallest spot siz Experiment <mark>s B</mark>	e sin

Current Work: SAGAs

SAGA performance in 2016 was unfortunate

- Day-to-day energy stability was not great
- Issue traced to loss of capabilities from vendor

Work to improve stability since 2016:

- Upgraded water system: new filters and added resistivity monitors
- Characterizing energy output inside SAGA (Osc, Amp, Green)
- New sources for components (lamps and laser medium)
- SAGA 2 operational, examining SAGA 1

End the saga of the SAGAs with careful measurement and monitoring

Transport Reconfiguration lead by Robert Ariniello Probe line lead by Henrik Ekerfelt

Current Work: Laser room and transport injection modifications

Cutting out windows required reworking laser transport

- New shutters
- New lenses
- Incorporate Deformable Mirror
 + wavefront sensor
- Cameras to align laser to DM
- Cameras to align laser to transport
- HeNe for 'always on' transport monitoring

Transport reconfiguration necessary to meet laser quality needs

Current Work: Deformable Mirror

- System uses wavefront sensors and focus optimizer 'pharao' (just a camera)
- Initial tests show 2x intensity from wavefront sensor, 1.3x more with Pharao
- For operations:
 - Wavefront sensor in laser room
 - Pharao camera in tunnel
- DM operation, procedures and simulations quickly reaching maturity

* Reflected wavefront error is $\lambda/2$ at 633nm ** Reflected wavefront error is λ at 633nm

2

Deformable mirror enables laser to meet highest intensity requirements at FACET-II

by ~1000 times)

Regen beam (~1cm diameter, attenuated

L1, FL=-10cm

Current Work: Laser Monitoring System

rStatusTableGUI@facet-srv01

-	Lasar Departs (IV of art)	Current	15 Min Date	1 11 010
	Caser Property (% of ret)	Current	15 Min. KMS	I Hr. KMS
1	Centraid Offret [mm] (x x)	2510	0 42 0 47	05105
6	Centroid Offset [mm] (x,y)	2.5,1.9	0.43,0.47	0.51,0.5
5	Spot Size (mm) (x,y)	0.2,0.8	0.39,0.14	0.86,0.21
9	Energy (m)W PMC (91 Pages (PMC)	3.7	1.5	0.45.4.6
2	Pagan Output	380	0.26,5	0.45,4.6
•	Centroid Offset [mm] (x y)	2211	0.0.0.11	1606
-	Centroid Offset [mm] (x,y)	2.2,1.1	0.8,0.11	1.6,0.6
8	Spot Size (mm) (x,y)	0.6,0.69	0.036,0.062	0.065,0.09
9	Frances (m) PMC (%) Para as (PMC)	7.3	2.1	2.2
10	Energy (m), KMS (%),Kange/KMS)	4.4	0.27,6.2	0.33,6.1
11	MPA Output	1015		
12	Centroid Offset [mm] (x,y)	1.9,1.5	0.87,1.2	1.2,1.7
13	Spot Size [mm] (x,y)	0.81,1.1	0.17,0.31	0.19,0.32
14	Nonuniformity	10	2.4	2.4
15	Energy (mJ, KMS [%],Range/KMS)	14	0.65,6.1	0.82,6.4
16	Compressor Output			
17	Centroid Offset [mm] (x,y)	2.3,1.1	0.85,1.1	1.1,1.5
18	Spot Size [mm] (x,y)	2.7,2.8	0.34,0.35	0.34,0.48
19	Nonuniformity	8.7	2	2.1
20	Energy (mJ, RMS [%],Range/RMS)	5	0.68,6.2	0.87,9.5
21	UV Conv. Output			
22	Centroid Offset [mm] (x,y)	1.9,1.2	1.2,1.5	1.6,1.9
23	Spot Size [mm] (x,y)	0.34,0.39	0.16,0.2	0.19,0.22
24	Nonuniformity	7.9	2	2.1
25	Energy (mJ, RMS [%],Range/RMS)	0.18	2.3,6.2	2.9,6.1
26	UV Iris Output			
27	Centroid Offset [mm] (x,y)	2.7,2.4	1.2,1.1	1.5,1.4
28	Spot Size [mm] (x,y)	1.8,2.3	0.19,0.38	0.19,0.48
29	Nonuniformity	17	1.9	1.9
30	Energy (mJ, RMS [%],Range/RMS)	0.043	2.1,6.4	2.7,6
31	VCC			
32	Centroid Offset [mm] (x,y)	3.2,2.5	12,14	21,19
33	Spot Size [mm] (x,y)	0.045,0.049	2,1.9	2.1,2.3
34	Nonuniformity	9.2	6.1	6.8
35	Energy (mJ, RMS [%],Range/RMS)	0.16	0.67,5.9	0.75,6.2
36	Temperature [deg F]	72	0.013	0.029
37	Humidity [%]	51	0.91	1.9

Constant vigilance, alert to subtle changes to prevent downtime

SLAC

Current Work: Transport Feedback

SLAC

Pointing from laser room into IP area subject to thermal effects

- Time scale ~10 minutes during sunrise and sunset
- 7 cameras along 16 meters of transport to monitor and correct

Feedback reduces long time scale drift by 10-15x

- 'hold the beam' while setting up
- Automate transport alignment

Consistent, faster laser alignment compared to FACET

Current Work: Compressor Upgrade

Path to 40 TW with little resistance

- Compressor box easily handles larger gratings - 2x the area of previous box
- Transport mirrors would need to get larger
- SAGA pump lasers replaced by GAIA

Function	40 TW (Gratings set limit)
Upgrades	<i>Optimal Present + GAIA 8" gratings</i>
Power-amp Pump [J]	7.5
Power-amp Output [J]	2.3
Beam Transport Input [J]	2.0
<i>Compressor Input [J] (beam transport output)</i>	1.8
<i>Minimum Beam Size @</i> Compressor [radius, cm]	3.0
Pulse Length Before Compression [ps] [FWHM]	150.0
Compressor Output [J]	1.28
Pulse Duration after compression (fwhm) [fs]	35.0
Peak Power [TW]	36.5
Intensity* [1018 W/cm^2]	242.4
a0*	10.6

SLA0

Larger Compressor vacuum box accommodates long range upgrades