

Upgrade OptionsS20 chicane + Linearizer and Laser heater

October 26 2020

Glen White FACET-II Optics Designer

Overview

- Experimental requirements
- Performance with existing layout
- Upgrade options
 - Sector 20 optics upgrade options
 - Final bunch compressor
 - Double-dogleg
 - Emittance compensated compressor design
 - Final focus and spectrometer quadrupoles
 - Laser heater in e- injector
 - X-band "linearizer" LCAV structure in L1
- Performance estimates with upgrade optics from start-to-end tracking

Experimental requirements

KPP's will be met for existing layout, some experiments however benefit from increased levels of beam compression (peak current / small bunch length) and/or improved beam quality (emittance):

SFQED (E-320)

• e.g. " σ_z = 10µm, I_{pk} = 20kA, δ_E ~0.5%" will benefit from linearizer

Beam filamentation (E-305)

 Gas target specs also befit from linearizer. Solid target needs high peak current, S20 upgrade required.

TeV/m plasma wakefield acceleration (E-317)

Attosecond strong-field physics (E-318)

Advanced diagnostics (E-326,327,328,329)

Extending beyond TCAV measurement resolution

Furthering design efforts towards ultimate compressor

Many experimental proposals "pushed" goals will benefit and/or require proposed upgrades

Existing Layout 3-stage Bunch Compressor SLAC S10 – S20

Existing design good to meet KPP's

• ϵ = 20 um-rad, σ_z < 20 um, Q=2 nC

Making full use of low-emittance rf photo injector

- Expect capability for σ_z < 1 um @ ϵ (in L3) < 5 um-rad (I_{pk} up to 300kA)
- Greatly exceed current state-of-the-art

Limitations of existing system to fully exploit this possibility

- Linearity of compression & fine-control of longitudinal phase
- Emittance & longitudinal compression degradation in final compressor

6D Particle tracking to IP with 2D CSR

W-chicane limits $I_{pk} \sim 100 kA$, with $\Delta \epsilon \sim 40$ um-rad

Existing layout meets KPP requirements but doesn't fully utilize full potential of new high-quality, electron injector

Improve final compression quality: New BC20 configuration

- Proposed upgrade: "double-dogleg" style BC20 compressor
- Reduced integrated bending & optimized optics mitigates CSR degradation
 - I_{pk} ~200 kA with $\Delta \varepsilon_x = 23 \ \mu m$ -rad (low espread) *requires linearizer*
 - I_{pk} ~300 kA with $\Delta \varepsilon_x = 40 \ \mu m$ -rad (high espread)

Proposed upgrades to BC20 partially mitigates CSR emittance growth and generates high peak current electron beams

New BC20 configuration compatible with e+ upgrade option

z (μm)

- Proposed upgrade: "double-dogleg" style BC20 compressor
- Reduced integrated bending & optimized optics mitigates CSR degradation
 - I_{pk} ~200 kA with $\Delta \varepsilon_x = 23 \mu m$ -rad (low espread)
 - I_{pk} ~300 kA with $\Delta \varepsilon_x = 40 \mu m$ -rad (high espread)
- Provision for e+ arm to synchronize e- / e+ delivery into S20

Proposed upgrades to BC20 partially mitigates CSR emittance growth and generates high peak current electron beams

Emittance-compensated compressor design options

- Currently evaluating emittance-compensated bunch compressor designs
- Length compatible with BC20, considered for future installation options
- Promise of max bunch compression (I_{pk}>200 kA) with minimal or no emittance degradation

Evaluating emittance-compensation designs for BC20

Sector 20 final focus and spectrometer magnets

SLAC

See https://www.slac.stanford.edu/~whitegr/F2_S2E/ for more optics configuration options

Existing FFS designed for 20 GeV, flat (100:1) emittance beams Re-designed FFS for 10 GeV, round emittance beams

- Permits β^* < 15cm & allows flexibility for different experimental requirements
- XTCAV relocation & rotation allows for LPS diagnostics
 - e.g. E-327

Re-designed spectrometer allows for clean beam propagation with reduced β^* optics and high-resolution LPS diagnostics

Re-designed FFS & dump optics to cater specifically for round-beam configuration from photo-injector

Laser heater

Chicane included in injector installation Requires addition of undulator & IR laser transport, alignment system Increases incoherent slice energy spread of electron beam

- Orthogonal control of final bunch length
- Suppression of micro-bunching
- Mitigation of longitudinal jitter effects from linac rf

Laser heater upgrade option preserved in design: allows for bunch length control, micro-bunching suppression and rf jitter reduction

Laser heater allows control of final bunch length and micro-bunching suppression

Orthogonal control of final bunch length with selection of laser heater power

- Flexibility for experiments
- Benchmarking of new CSR physics modeling tools

https://doi.org/10.1038/s41598-020-61764-y

- Relative bunch length jitter reduces with LH power
 - $\Delta\sigma_z$ ~ 3µm @ full compression e.g. 500 keV LH -> X6 reduction in $\Delta\sigma/\sigma$

Suppression of micro bunching Example: 50 keV energy spread @ laser heater

$$\lambda_c = \left(\frac{2\pi R_{56}}{1 + h_1 R_{56}}\right) \cdot (\delta_E / E)$$

Compressor	δ _E /E	h ₁ (m ⁻¹)	R ₅₆	λ_c (μ m)
BC11	1.9E-05	8.8	0.046	3.9 -> 84
BC14	9E-06	33.5	0.036	1.9 -> 77
BC20	4.8E-05	177.3	0.005	7.4 -> 8.2

Laser heater a useful tool for experimental flexibility and studying physics of extreme compression

Particle tracking: upgraded Sector 20 optics with max bunch compression

X-band linearizer

> Enables high Ipk @ low energy spread <

Summary

Existing layout allows KPP's and planned experimental program

 Limits exist to full compression potential granted by low-emittance electron injector

Considered upgrades allow an enhanced experimental program by providing:

- Up to 300 kA peak current max compression at 0.9% energy spread with upgraded BC20
- Small spot size focusing (β @IP 15->5 cm) and optimized diagnostics setup with upgraded FFS & spectrometer in Sector 20
- Up to 160 kA peak current max compression at 0.3% energy spread with x-band linearizer
- Orthogonal control of compression, micro-bunching & jitter suppression with laser heater

Design study currently in progress for emittance-compensated BC20 to provide high peak current with high-quality transverse phase-space