E304 Progress, Status and Plans for first Experiments

Chaojie Zhang, Xinlu Xu, Sebastien Corde on behalf of the E300 Collaboration

FACET-II (Zoom) PAC Meeting, OCT 26-29th, 2020

Oct 28, 2020

E304: generate low emittance beams using downramp trapping in PWFA

2 Year Demonstrate downramp trapping

- Driver significant energy loss
- Evidence of injection (charge excess)
- trapped electron signal on the dump table

- E>1 GeV to make the beam to the dump table
- Make emittance measurements using laser/ beam ionization
- Reach the limit of the diagnostic (>1 μ m)

Systematic study of the injection

Generate measure ultralow emittance beams

- Measure ultralow emittance (<1 μ m)
- E>1 GeV
- δE/E<~1%
- ε_n<~1 μm
- I>~5 kA

Experimental timeline

- Experimental design: Dec, 2020 for the first run
- Installation plan: E305 will install the apparatus, E304 will only need to change nozzles
- Ready for experimental safety review: review docs submitted
- Ready for commissioning: Anytime after installation
 - Beam requirements: E=10 GeV, $\sigma_r < 20 \mu m$, $\sigma_z < 30 \mu m$, $\epsilon_n < 20 \mu m$, Q > 1 nC (I > 4 kA)
- first science: demonstrate injection and understand emittance dependence on the driver/plasma parameters
 - Beam requirements: E=10 GeV, $\sigma_r \sim \sigma_z < 10 \mu m$, $\epsilon_n < 10 \mu m$, Q>1 nC (l>12 kA)
- 2nd phase of the program: generating ultralow emittance beams
 - Prerequisites: E=10 GeV, $\sigma_r \sim 4 \mu m \beta \sim 5-10 cm$ (same as E300), $\sigma_z < 10 \mu m$, $\epsilon_n < 10 \mu m$, Q>1 nC (I>12 kA)
 - Date: year 2 and 3 (2022-2023)

Experimental layout

Driver

- Same as E300
- EOS-BPM
 - Bunch length
 - Charge
 - Position

profile before installation

A short undulator as a potential diagnostic for ultralow emittance (year 3 and beyond)

Genesis simulation

A short (2 m) undulator as a beam characterization tool ($\lambda u=3$ cm, K=2.8, N_{period}=66)

 Driver beam radiates at different wavelength (E>7 GeV, εn>5 μm, δE/E~1%)

Desired facility upgrades

The items listed here do not affect the proposed E304 experimental plan; But they will provide more controllability and diagnostics for future upgraded experiments;

- Ability to deliver and characterize round beams at IP (critical for generating beams with tens of nm emittance) (year 2 and 3)
- A short undulator after the picnic basket as a emittance diagnostic (year 3 and beyond)
- Downstream deflecting cavity for characterizing the longitudinal phase space of the injected bunch (year 3 and beyond, or use other novel methods)

Collaborations

X. Xu, M. Hogan, V. Yakimenko, FACET-II staff

Sebastien Corde's group

Mike Litos' group

C. Joshi, K. Marsh, W. B. Mori, Y. Wu, Z. Nie, H. Fujii

Thank you for your attention

