

E326: Non-Intercepting Diagnostics for High Intensity Beams and Computer Control

October 26-29, 2020			
Brendan O'Shea			
In Collaboration with: Auralee Edelen, Claudio Emma, Spend	cer		
Gessner, Adi Hanuka, Alex Scheinker, Glen White	• -		
	/		
U.S. DEPARTMENT OF ENERGY Office of Science		SLAC	NATIONAL ACCELERATOR LABORATORY

 \setminus /

E326 Motivation

SLAC

- FACET produced @(30 kA) beams
 - Punctured some foils, drilled through some diamond
- FACET-II expects to produce 100+ kA
- Future accelerators want to get to MA!

These accelerators pose diagnostic challenges:

- Materials in, or near the beam, are a non-starter
- Extremely short beams (FACET-II) need to be handled carefully to preserve quality

The future is both high quality and high intensity - diagnostics are needed

Edge Radiation Based Diagnostic

- Great for measuring high-current beams: nonintercepting
- Ideal for computer control: single shot
- Edge Radiation generated at dipole magnet edges
- Interference between edges used to measure divergence and energy spread
 - Phase differences due to beam size minimal
- To be fast, diagnostic requires advanced image analysis

Continuous quantification of high-current beams, ideal for machine learning

SLAC

Convolutional Neural Network for real time diagnostic

- Integral to generate image not tractable and numerical integration is "slow", O(mins)
- Convolutional Neural Networks excel at image analysis
- Examines entire image instead of lineouts
 no data is lost for speed
- Trained on simulation data that is generated offline - no sacrifice of fidelity or accuracy for speed
 - Understanding beam dynamics
 - Good SRW simulations
 - Good Image analysis
 - Good control

Quickly determine beam distribution from interference pattern using machine learning

 $I(\vec{x}) = \left| \int \vec{E}(\vec{x} - \vec{x}', p) \rho(\vec{x}', \sigma) \mathrm{d}\vec{x}' \right|^2$

Image from PARsE http://parse.ele.tue.nl/education/cluster2

Machine Learning Ecosystem at FACET-II

Synergistic experiments, individual success enhances all research

SLAC

Experimental Layout

- 14 ports spread across Dogleg, BC11, BC14 and BC20
 - Ports already exist in Dogleg and BC14
- Off the shelf camera objectives and filters, standard FACET gigE cameras, laser optomechanics
- "Divide and conquer" the accelerator

Gur

ector

Dogleg

Linac

Experimental Timeline - Prioritized tunnel hardware

								-SLAC	_
	Oct 2020	Nov 2020	Dec 2020	Jan 2021	Feb 2021	Mar 2021	Apr 2021	May 2021	
Dogleg		2	3					4	
BC11	C	BC11	@ 90%	1	2	3			
BC14							2		
BC20				0	BC20 @	90%		1	

- 0) Design beam chambers
- 1) Install Beam chambers
 - Success: Beam chambers installed
- 2) Install optics
 - Success: Light/interference on cameras
- 3) Tune beam optics to check dynamic range
 - Success: cross check fringe contrast against traditional diagnostics
- 4) Start building and implementing ML model

Prioritizing tunnel hardware to meet FACET-II schedule

Readiness [%]	Beam Chambers	Optics	ML
Dogleg	100	90	5
BC11	50	70	5
BC14	100	60	5
BC20	0	50	5

Safety Review: Done Beam Requirements: Single bunch preferred

Diagnostics and Observables, Future Evolution and Desired Upgrades

SLAC

Diagnostics and observables:

Current emittance diagnostics are sufficient

Future Evolution:

- Control! Both simple and novel
- Potential use in the dump at FACET-II
- Add to design of CSR chicane
- AWA has shown interest
- LCLS has shown interest too
- FACET-III could use this technique downstream of the plasma

Desired Upgrades:

- Laser heater to study coherence effects
 - Coherence effects change what you measure, not if you can measure
- Dipole pairs everywhere!

Thanks! Questions?

1 slide: what is desired facility upgrades Backup slides:

- 1 slide: collaboration
- 1 slide: publications, students

SLAC

1 slide: experimental timeline: experimental design (90%) : date installation plan: date ready for Experimental safety review: date ready for installation: date Ready for commissioning: beam requirements

first science: beam requirements

2 phases of the program: prerequisites, date, etc.

1 slide: diagnostics and observables

1 slide: what are the science goals: indicate for each target time (ex. 6 mo, 1 year, 3 years), the definition of success for each goal