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E326 Motivation

« FACET produced 6(30 kA) beams

- Punctured some foils, drilled through
some diamond

* FACET-II expects to produce 100+ kA
» Future accelerators want to get to MA!

These accelerators pose diagnostic
challenges:

 Materials in, or near the beam, are a
non-starter

» Extremely short beams (FACET-II)
need to be handled carefully to
preserve quality
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Beam damaged to the 500-micron Ti OTR disk

Removed from FACET beamline on 5/30/2012
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The future is both high quality and high intensity - diagnostics are needed
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Edge Radiation Based Diagnostic

600+5 nm

Edge Radiation Filter

Electron
Trajectory

Camera

* @Great for measuring high-current beams: non-
iIntercepting

* |deal for computer control: single shot

* Edge Radiation generated at dipole magnet edges

* Interference between edges used to measure
divergence and energy spread
* Phase differences due to beam size minimal

* To be fast, diagnostic requires advanced image analysis
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Continuous quantification of high-current beams, ideal for machine learning
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Hezaveh et al, Nature 548, 555-557 (2017)

Convolutional Neural Network for real time diagnostic

 |Integral to generate image not tractable
and numerical integration is “slow”,

O(mins)

» Convolutional Neural Networks excel at
Image analysis

« Examines entire image instead of lineouts
- no data is lost for speed

* Trained on simulation data that is
generated offline - no sacrifice of fidelity or
accuracy for speed

» Understanding beam dynamics
- Good SRW simulations
* Good Image analysis
- Good control
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Image from PARSE
http://parse.ele.tue.nl/education/cluster2

Quickly determine beam distribution from interference pattern using machine learning
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Machine Learning Ecosystem at FACET-II
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Learned Control
(Reinforcement Learning,
New proposal)
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Non-destructive, single
shot continuous
monitoring of emittance

Longitudinal phase
space diagnostics,
always on, and for
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Synergistic experiments, individual success enhances all research
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Experimental Layout
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Challenges increase down linac, program works from dogleg down to BC20
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Experimental Timeline - Prioritized tunnel hardware

0) Design beam chambers
1) Install Beam chambers

 Success: Beam chambers installed
2) Install optics

* Success: Light/interference on cameras
3) Tune beam optics to check dynamic range

- Success: cross check fringe contrast against ~ Safety Review: Done
L _ _ Beam Requirements: Single bunch preferred
traditional diagnostics

4) Start building and implementing ML model
Prioritizing tunnel hardware to meet FACET-II schedule
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Diagnostics and Observables, Future Evolution and
Desired Upgrades

1

Diagnostics and observables:
 Current emittance diagnostics are sufficient

Future Evolution:

 Control! Both simple and novel

 Potential use in the dump at FACET-II

» Add to design of CSR chicane

 AWA has shown interest

* LCLS has shown interest too

 FACET-Ill could use this techniqgue downstream of the plasma

Desired Upgrades:

 Laser heater to study coherence effects
- Coherence effects change what you measure, not if you can measure
 Dipole pairs everywhere!
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Thanks!
Questions?
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1 slide: what is desired facility upgrades
Backup slides:

1 slide: collaboration

1 slide: publications, students

Brendan O’'Shea — E326 Non-Intercepting Diagnostics for High Intensity Beams and Computer Control — FACET-II PAC, October 26-29, 2020

e M\

10



»

1 AL
D M\

1 slide: experimental timeline:

experimental design (90%) : date

installation plan: date

ready for Experimental safety review: date

ready for installation: date

Ready for commissioning: beam requirements
first science: beam requirements

2 phases of the program: prerequisites, date, etc.
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1 slide: diagnostics and observables
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Science Goals - Slide #1

1 A

1 slide: what are the science goals: indicate for each target time
(ex. 6 mo, 1 year, 3 years), the definition of success for each
goal
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