Commissioning plans

2nd FACET-II Program Advisory Committee Meeting

U.S. DEPARTMENT OF ENERGY Office of Science

Jerry Yocky

October 26, 2020

SLAC

FACET to FACET-II

FACET-II Design Parameters:

Electron Beam Parameter	Baseline Design	Operational Ranges
Final Energy [GeV]	10	4.0-13.5
Charge per pulse [nC]	2	0.7-5
Repetition Rate [Hz]	30	1-30
Norm. Emittance γε _{x,y} at S19 [μm]	4.4, 3.2	3-6
Spot Size at IP $\sigma_{x,y}$ [μm]	18, 12	5-20
Min. Bunch Length σ_z (rms) [μ m]	1.8	0.7-20
Max. Peak current Ipk [kA]	72	10-200

J. Yocky, FACET-II PAC, October 26, 2020

Key Performance Parameters:

- The threshold KPPs are the minimum parameters against which the project's performance is measured when complete
- The objective KPPs are the desired operating parameters that the project will design to with the intent that those may be achieved during steady operation
- Taking performance from Threshold to Objective will require operations time to optimize accelerator performance

Description of Scope	Units	Threshold KPP	Objective KPP
Beam Energy	[GeV]	9	10
Bunch Charge (e-)	[nC]	0.1	2
Normalized Emittance in S19 (e-)	[µm]	50	20
Bunch Length (e-)	[µm]	100	20

Photoinjector laser

	Laser Property I% of refl	Current	15 Min. RMS	1 Hr. RMS
1	Oscillator Output	corrent	49 1111 1012	1 4 101 1903
2	Centroid Offset [mm] (x.v)	2.5.1.9	0.41.0.44	0.44.0.45
3	Spot Size (mm) (x,y)	6.2.6.8	0.55.0.14	0.36.0.13
4	Nonuniformity	3.7	1	1
5	Energy (mW, RMS [%],Range/RMS)	330	0.23.4.9	0.23.5.4
6	Regen Output		0.007.00	
7	Centroid Offset [mm] (x,y)	2.2.1.1	1.8.0.16	1.4.0.32
8	Spot Size (mm) (x.v)	0.6.0.69	0.091.0.12	0.078.0.11
9	Nonuniformity	7.5	2.4	2.2
10	Energy (ml. RMS [%].Range/RMS)	4.5	0.52.14	0.38.20
11	MPA Output			
12	Centroid Offset [mm] (x.v)	1.9.1.5	1.1.1.3	1.2.1.4
13	Spot Size (mm] (x.v)	0.81.1.1	0.2.0.3	0.19.0.32
14	Nonuniformity	10	2.1	2.1
15	Energy (ml. RMS [%].Range/RMS)	14	0.83.6.3	0.69.7.7
16	Compressor Output		0.00,0.0	0.00,111
17	Centroid Offset [mm] (x.v)	2.3.1.1	1.1.1.1	1.1.1.2
18	Spot Size (mm) (x,y)	2.7.2.8	0.34.0.39	0.34.0.43
19	Nonuniformity	9	2	2.1
20	Energy (ml. RMS [%],Range/RMS)	5.1	1.9	0.8.12
21	UV Conv. Output		1,0	0.0,12
22	Centroid Offset [mm] (x,y)	1912	1615	1616
23	Spot Size [mm] (x,v)	0.34.0.39	0.2.0.21	0.19.0.2
24	Nonuniformity	8.1	2.1	2.2
25	Energy (ml. RMS [%].Range/RMS)	0.2	225.8	2383
26	UV Iris Output		212,010	210,010
27	Centroid Offset [mm] (x,y)	2723	1511	1512
28	Spot Size [mm] (x,y)	1.8.2.3	0.21.0.4	0.21.0.41
29	Nonuniformity	16	1.9	1.9
30	Energy (ml. RMS [%],Range/RMS)	0.046	2.6.1	2.3.6.5
31	VCC			
32	Centroid Offset [mm] (x.v)	0.92.0.92	450.28	780.27
33	Spot Size (mm] (x.v)	0.12.0.18	200.18	330.16
34	Nonuniformity	36	NaN	NaN
35	Energy (ml, RMS [%],Range/RMS)	0.0098	1.2.5.3	1.3.7.5
36	Temperature (deg F)	72	0.02	0.019
37	Humidity [%]	46	1.4	0.93

Stop Live Table

-SLAC

Photoinjector laser is ready for laser cleaning and single bunch operations, Improvements will continue towards better uniformity and two pulse mode

J. Yocky, FACET-II PAC, October 26, 2020

All RMS values given as a percent difference from the mean

Photoinjector and laser cleaning

- Gun processed to 10MW with 1us long RF pulse
 - Gun scrubbed in 2018 AIP operations
- Laser spot optimized for cleaning
- Cleaning procedure/GUI checked out
 - Efficiency
 - Safety

Laser cleaning ready for execution week of 10/26

135 MeV Injector

- Injector modulators upgraded with "Mission Readiness" hardware that allows for more stability
- New PLC code checkout
- New Low-Level RF (LLRF) checkout
- New infrastructure to replace old CAMAC hardware commissioned
- RF processing in injector stations proceeding
- Checkout of diagnostics
 - Profile monitors, wire scanner, & Faraday cups
 - BPMs & Toroid
 - Bunch length monitor & deflecting cavity

Injector modulators for Gun, L0A, L0B and Tcav have new technology for better stability Characterization of 135 MeV beam Weeks of 10/26 and 11/2.

J. Yocky, FACET-II PAC, October 26, 2020

Cooling Tower 1201 - expected completion Oct 31

F&O's CT1201 maintenance project was delayed due to COVID-19 and subcontractor Temporary cooling towers in Sectors 10 and 11 are used to support 135MeV commissioning

J. Yocky, FACET-II PAC, October 26, 2020

SLAC

L1: 335MeV electrons through BC11 to TD11

- Establish beam through BC11 chicane
- Tune beam profile on TD11 tune-up dump
- Two RF stations in L1 linac, utilizing legacy control system
- BPM checkout and timing
- Bunch length monitor commissioning
- Profile monitor and toroid checkout
- Verify lattice through TD11

Checkout and commissioning are planned for the week of 11/9

L2: 4GeV to BC14

- Establish 4GeV beam through L2 linac and through BC14 chicane
- Tune RF stations
- Tune beam profile
- Verify lattice through BC14
- ~30 L2 RF stations utilizing legacy control system, 6 currently undergoing maintenance for modulator or tube issues (not all RF needed for KPP verification)

Checkout and commissioning are planned for the week of 11/16

SLA

L3: 10GeV to "W" chicane in Sector 20

- Establish 9-10GeV beam through L3 and into FACET chicane
- ~40 RF stations utilizing legacy control system, 10 currently undergoing maintenance for modulator or tube issues (not all RF needed for KPP verification)
- Commission L3 transverse cavity at 15-2 900 girder
- Commission new sector 19 optics and match into the FACET chicane
- Establish beam to FACET dump
- Diagnostics checkout

Checkout and commissioning are planned for the week of 11/23

- FACET-II injector commissioning is under way
- Bunch compressor chicanes commissioning and linac recommissioning through month of November
- Establish threshold key performance parameters of >100nC charge, >9GeV energy, <100um bunch length, <50um emittance early December

Threshold KPP expected first week of December