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Relationship to Other ML Application Areas
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Deep RL learns how to optimally control a system by interacting with it over time (builds understanding of system) 
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Note: all are collaborative, 
complementary efforts!
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Science Motivation

Source: Ji Qiang

Comprehensive, system-wide control is likely to be a key factor in 
improving custom control of extreme beams, but this is a difficult task

A. Marinelli, IPAC’18
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Major limitations in the way accelerator tuning is done:

• Piecemeal tuning of subsystems (known to be sub-optimal)

• Indirect use of high-dimensional diagnostics (e.g. images)

• Often a lack of accurate online models

à Potentially limiting factors in control of extreme beams

More global view can enable better control:

• Fully exploit unknown system-wide sensitivities + nonlinearities

• Faster switching between setups (if using global representation of 
machine)

• Better handling of parameter tradeoffs (e.g. jitter, matching, 
longitudinal phase space)



Deep Reinforcement Learning

Neural Network
(control policy) System

new system state, reward

actions

• Control policy maps states to actions

• Policy is learned over time based on performance 
(quantified by the “reward”)

• Neural network enables use of diverse signal types 
(e.g. scalars, images, time series)

• Often learns a system model simultaneously (map 
states + actions to expected reward)

Deep RL is well-suited to accelerator control, but dedicated R&D is needed to bring it to full fruition

Appeal for accelerator control:
• Suitable for large, nonlinear systems

• Exploit machine-wide sensitivities + directly use 
complicated diagnostic information

• Leverage information from past observations

• Transfer between similar designs

• Well-established in other fields (e.g. robotic control) 
à but accelerators have unique challenges

Gu, et al., 2016Nagabandi, et al., 2019



RL on the round-to-flat beam transform at UCLA Pegasus:

• Trained offline using learned model

• Transferred to machine for retraining

• One trained, RL had fastest convergence compared with 
other methods
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Pegasus beamline layout with selected distances

updated 1/18/2019 

quads used for flat beam screen location
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Simulation

A. Edelen, E .Cropp, A. Hanuka, C. Emma, P. Musumeci, P. Denham, A. Scheinker
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Conceptual Experimental Layout
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Three stages: injector, post-BC20, then combined control

Train controller in simulation, leverage passive data from other experiments in 
training, then test + retrain on machine



Diagnostics and Observables

• LPS diagnostics (e.g. injector, downstream TCAVs)

• Emittance measurements

• Upstream inputs: virtual cathode camera, QE map when available, etc.

• Readbacks from settings (gun solenoid, gun and linac phases / amplitudes, etc.)

à Can be flexible and adapt to installation / commissioning schedule
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Goals, Timeline, and Definition of Success

Technical Goals:

Stage 0:  Finish simulation campaign in Impact and Lucretia (by mid-November)

Stage 1:  Demonstrate RL control for the injector emittance and longitudinal phase space (LPS) in single-bunch 
mode (6 months)

Stage 2:  Demonstrate RL control for linac LPS in single-bunch mode (year 1)

Stage 3:  Combined injector + linac control of LPS in single-bunch mode (year 1)

Stage 4:  Extend to two-bunch mode (year 1.5 - 2) and other setups

à Definition of success: faster or higher-quality tuning than standard methods, new capabilities in control

Infrastructure Goals:
Delivery of algorithms and interface for regular FACET-II operations (year 1 - 1.5)
Demonstrate extension to other setups (year 1.5 - 2)

à Definition of success: tool available and used in routine operation

9
Staged approach gradually increases complexity

Success defined by performance (new capabilities) and transition to operations



Potential Future Evolution

Initial studies are to establish the method + infrastructure and 
demonstrate the approach à philosophy is to start small 

Future evolution:

• Scale up to more comprehensive control (more controlled variables and 
observed inputs)

• Adapt to more challenging tasks where comprehensive control is likely to 
have a large impact on capabilities (e.g. optimize through plasma stage)

• Transfer learning to apply to other machines for similar control tasks (e.g. 
injector optimization, longitudinal phase space manipulation)

10



Match to FACET-II R&D Goals and Facility Infrastructure

Match to Facility + Other FACET-II Experiments

• R&D with challenging-to-control “extreme” beams (e.g. high current, high intensity) 
à RL is a promising approach for fine control of such beams (e.g. strong nonlinear collective effects)

• Variety of experiments requiring custom beams 
à Ideal application for RL (can use learned information from previously-observed setups)

• Suitable diagnostics and data/control infrastructure
à Essential for making effective use of deep RL (best use is with high-dimensional data)

• Benefit to future FACET-II experiments à RL control will likely be an enabling technology for new experimental 

capabilities (esp. where finer control of extreme beams is required)

• ML-based diagnostics (LPS and edge radiation) can be inputs to RL control
• Joint use of gathered data and machine time

Data from LPS VD and adaptive feedback can be used in pre-training RL controller, data from RL testing can help train LPS VD

• Adaptive feedback and RL fill complementary niches and can be used in tandem:

Good synergy w/ current ML efforts (e.g. tandem use of algorithms, can leverage joint data)
Good match to long-term FACET-II science goals (e.g. control of extreme beams)

Synergy with Current ML Efforts

Model-independent à no data needed
Good for new setups, hardware changes, etc

Excellent for stabilization, drift compensation, fine tuning

Model-dependent à learns to control system over time
Very fast for observed setups, needs more time to learn very different setups

Good for bulk and fine tuning; less robust for stabilization



Desired Facility Upgrades

• GPUs connected to control system will be critical for dedicated 
convolutional neural network deployment and online retraining 

à for initial testing can use shared desktop GPU (but not suitable for dedicated use)

• Extended data archiving / acquisition capabilities 
à e.g. more flexibility with beam synchronous acquisition for cameras
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Collaboration
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LCLS injector and linac layout is similar to that of FACET-II, and 
both require delivery of customized LPS

à Opportunity to demonstrate transfer of RL algorithms between 
accelerator systems

Long-term aim is to apply to experiments (e.g. tuning for CSR 
studies, plasma experiments, etc.)



Backups
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Timeline

• Simulation campaign: underway with Impact (injector) and Lucretia (linac); estimated 
finish by end of November 2020

• Conceptual design: done, will adapt to available instrumentation as needed

• Experimental design (90%): mid December 2020

• Ready for installation: end of December 2020

• First science: nominal beam parameters or commissioning beam is ok

• Stages: first target injector, then linac + combined control
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