

Experimental Area

S20 Beamline Evolution from FACET to FACET-II

FACET-II Project and AIPs executed in parallel to commissioning will transition S20 beamline around experimental area (TCAV, FF, Spectrometer)

IP Experimental Area Modifications for FACET-II

Simplified laser transport, larger laser compressor chamber, rotated picnic basket, space for differential pumping

FACET Experiments use different Plasmas: Laser or Beam Field Ionization, "Heat pipe oven" or Gas

Heat Pipe Oven: Li/He or Rb/Ar Vapor/buffer gas (at same pressure):

n₀ = 10¹⁴-10¹⁷ e⁻/cm³, L = 20-200 cm

Enabled Many Advances in PWFA Physics:

•	Trojan-horse Injection – <i>Nature Physics 2019</i>	(1E17, 3.2 Torr H/He mix)
•	High-field Acceleration – <i>Nature Communications 2016</i>	(1E18 Ar, 32 Torr)
•	Ionization Injection – PRL 2014	(2.7E17 Rb, 16 Torr)
•	Wakefield Mapping – <i>Nature Communications 2016</i>	(2.5E17, 32.5 Torr)
•	Hollow Channel e+ PWFA – <i>Nature Communications 2016</i>	(8E16, 9.6 Torr)
•	Multi-GeV e+ PWFA – <i>Nature 2015</i>	(8E16, 9.6 Torr)
•	High efficiency acceleration – <i>Nature 2014</i>	(5E16, 5.8 Torr)
•	42 GeV E-gain in one meter – <i>Nature 2007</i>	(2.7E17, 35 Torr)

Hydrogen, Argon or Mixed Gas Cells:

• n₀ = 10¹⁶-10¹⁸ e⁻/cm³, L = 10-100 cm

FACET-II experiments will require new sources with additional flexibility and control

SLAC

See presentation by Mike Litos Wed. 11:00AM

'Picnic Basket'

Seven 'Excellent' Experiments + 2:

- 1. E-300 E doubling, pump depletion, low dE/E, preserved emittance
- 2. E-301 (E300 in Hydrogen)
- 3. E-302 Transverse Wakefields in PWFA
- 4. E-303 Positron Generation & Acceleration
- 5. E-305 Filamentation & Gamma Bursts
- 6. E-308 Thin plasma lens
- 7. E-310 Trojan Horse II
- 8. E-320 SFQED
- 9. E-324 Plasma Imaging

https://portal.slac.stanford.edu/sites/ard_public/facet/newnav/Pages/tf/facet/FACETCurrentResearch.aspx

Efficient utilization of space will be required to accommodate as many experiments as possible with minimal human intervention inside

E300, E301, E302 & E-324

42″

SLAC

E308

to rail & diagnostic scale: cameras 0.14 main laser Jet & 25" Føil e EOS

36

-SLAC

42″

E310

42″

-SLAC

E305 (gas target)

42″

-SLAC

E305 (solid target)

42"

SLAC

E320

to rail & diagnostic scale: cameras 0.14 main laser let 8 25″ e EOS

42″

-SLAC

Safely Dumping the Ionization Laser

- Important to understand where the spent laser goes after ionization for multiple configurations in picnic basket
- Avoids unanticipated ablation and damage to beamline and/or experimental equipment

Building on lessons learned at FACET and utilizing better modeling tools to include important effects like apertures, refraction...

Probe Line Design Will Be Flushed Out in Plasma Sources WG

Low energy probe pulses provide valuable diagnostic information e.g. timing & alignment: EOS, Afterglow and plasma evolution (E-224)

Developing an EOS BPM for Transverse Wakefield Studies

Single crystals provide standard measurement of longitudinal spacing

- Difference signal provides horizontal offset
- First generation will measure one transverse direction
- Calibrated with stage translation

G-SLAC

Single crystal signal

Discussing Modified Lithium Oven Bypass Line for Improved Alignment and Greater Flexibility

• Baseline design: two alignment OTRs and ND filter plug for E-300

- Upgraded design: 5 OTRs along full length of E301 plasma + end cubes for dumping/observing E-305 laser
 - Understand the role of refraction: compare predictions to simulations
 - Investigating combination of holed mirrors and filter discs to dump E-305 filamentation laser and not interfere with E-301 ionization laser

Key Upgrades for Two-bunch Experiments

For emittance preservation under high beam-loading, hosing suppression and in-situ positron generation and trapping

- Plasma source with ramps, in-situ target (UCLA/CU Boulder)
- Photoinjector and differential pumping to deliver mm-mrad emittance
- Upgraded spectrometer to measure energy spectrum and emittance
- EOS system extended from 1D to 3D for hosing studies

Designing, building and commissioning experimental apparatus and specialized diagnostics employs research-funded scientific personnel from both SLAC and universities and is coordinated by SLAC AARD

M.J. Hogan, FACET-II Science Workshop, October 29, 2019

Key Upgrades for Single-bunch High Peak Current Experiments

For filamentation, injection and wake imaging:

Virtual diagnostic for longitudinal phase space & peak current up to 300kA

FACET-II has unique challenges related to high intensity beams that require new approaches

C. Emma – Phys. Rev. Accel. Beams **21**, 112802 (2018)

Updated Electron and Betatron Radiation Diagnostics for Measuring Beams after PWFA

Electron Beam

Emittance:

- Edge radiation in bunch compressors
- High resolution in vacuum OTR in spectrometer for single shot butterfly or multi-shot dispersive quad scan

Gamma-rays

Angular distribution:

convertor + scintillator, and pixelized CsI array for higher sensitivity

Spectrum:

transverse array of filters/convertors Ross filters (<100keV) Step filters (up to 250keV)

Particle and Gamma-ray Working Group provides input to design diagnostics that simultaneously benefit multiple experiments

Dump Table Diagnostic Installation is Progressing

See presentation by Doug Storey Tuesday 1:50PM

Particle and Gamma-ray Working Group provides input to design diagnostics that simultaneously benefit multiple experiments

si ac

Designing Spoiler Foils for Emittance Control

- Experiments desire ability to systematically scan emittance, preferably without lengthy retuning between values
- Independent control of drive & witness beam emittance preferred

 $\boldsymbol{\beta}_0$, $\boldsymbol{\epsilon}_0$

30 µm

 Investigating use of spoiler foils in S20 upstream of notch collimator or BC14 $\boldsymbol{\epsilon}^{*}$ $\Delta \theta_{s.rms}$ **Thickness of Ti**

- Issues under study:
 - Peak intensity & foil damage
 - Equal emittance growth in both transverse planes

B*

0.3 m

75 µm

3 m, 3 µm 240 µrad 0.9 mm 0.09 m 100 µm Emittance growth of 10 GeV beam in Ti Emittance after Foil, ^e [µm] ⁶ ¹ ⁷ ¹⁰⁰ ⁸ ¹⁰⁰ ⁹ ¹⁰⁰ 60 40 20 0 400 600 0 200 800 1000 Thickness of Ti [µm]

71 µrad

Coarse High Level Schedule

SLAC

Job		Octob	er 2019			Novem	ber 2019		December 2019				
Laser Room	Restore Laser Timing		Restore fu	ull laser ene	rgy	IY III							
	Laser Mon	itoring Cam	eras										
Laser Room To Transport		Design La	ser Transpo	ort		Install Roc	om -> Trans	port	Ce				
Laser Transport						Install Con	npressor Op	otics In	stall Tunnel				
DM Install							DM Arrives		Test DM in Laser Room				
Accelerator											PPS/BCS complete		
IP Area					Lift	Legs for IP Table	egs for IP Table in place; Table spoiler properties			New compressor legs; spoiler conceptual mechanical design			
Dump Table	Clean out	GAMMA2,3, CHER installed, GAMMA1 LFOV coarse install.			Butterfly c finalise co	hamber inst arse alignm	alled, ent		Camera motors commissioning				
Final Focus													
Dumpline													

Coarse High Level Schedule

SLAC

Job	Janua	ry 2020			Februa	ry 2020		March 2020				
Laser Room												
Laser Room To Transport	Commission compressor											
Laser Transport			Measure Wavefront in Tunnel									
DM Install					Install/Cha E300 Optic	racterize cs						
Accelerator	ARR			Hardware 335MeV to	checkouts S o S11	S10-20, higł	n charge	S14/20 deflector cavities, 10GeV to S20 dump, KPP, Users: background/alignment				
IP Area	Compress install; spo	or install; Pi biler review o	icnic basket & installatior	۱								
Dump Table												
Final Focus												
Dumpline												

Coarse High Level Schedule

Job	April 2020					May	2020	June 2020				
Laser Room												
Laser Room To Transport												
Laser Transport												
DM Install												
Accelerator	Beam qua configurat	llity, test vari ions, CD-4	ous beam		Regular operations (6 days/week, 24 hours/day)							
IP Area												
Dump Table												
Final Focus												

-SLAC

Experimental Area Timeline

For first set of experiments:

- Dump table diagnostics & butterfly chamber (November)
- Laser transport in tunnel except last piece to compressor (November)
- Legs for optical table (1st week November)
- IP Optical table empty and in place (Nov/Dec)
- Compressor box legs (DS check arrival date) (Dec)
- Compressor box (Jan)
- Picnic basket breadboard support (Jan)
- Picnic basket (Jan)
- Li oven beam line (windows on valves for SFQED) (Jan)
- Pumps, gauges, valves, cameras, probe lines, cables...

Later (AIPs):

- New SFQED chambers for dumpline
- Spoiler foils
- Differential pumping
- Final focus
- TCAV relocation and rotation
- Spectrometer (triplet)