

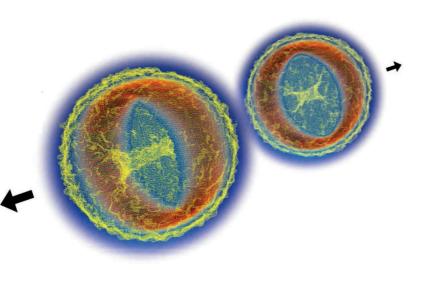
Machine/physics studies towards FACET-IIL stability

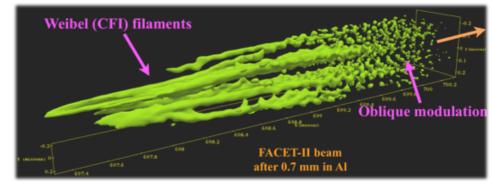
Outline

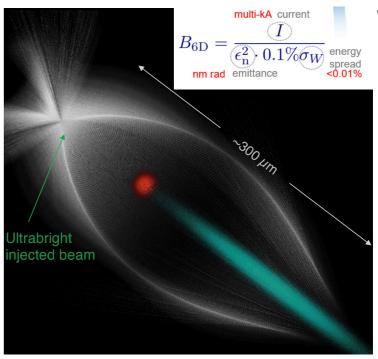
- Motivation: Sub-um bunches and stability challenges
- 2-stage compression designs for improved stability:
 - Green field example
 - FACET-II 2-stage example
- Passive CSR compression in wigglers
 - Mega-Amp beams at FACET-II
- Conclusion and future direction of study

Motivation for generating stable, sub-um beams

Science Applications:


- Beam physics towards new operating regimes in existing and next generation X-FELs (BES)
- Beam physics towards collider with suppressed beamstrahlung (HEP)
- Support for high brightness beams from Plasma Wakefield (HEP)
- Gamma ray source based filamentation (NNSA)
- High average power UV lithography source (Semiconductor industry)


PHYSICAL REVIEW LETTERS 122, 190404 (2019)


Prospect of Studying Nonperturbative QED with Beam-Beam Collisions

V. Yakimenko,^{1,*} S. Meuren,² F. Del Gaudio,³ C. Baumann,⁴ A. Fedotov,⁵ F. Fiuza,¹ T. Grismayer,³ M. J. Hogan,¹ A. Pukhov,⁴ L. O. Silva,³ and G. White¹

		NPQED			
Parameter	[Unit]	Collider	FACET-II	ILC	CLIC
Beam energy	[GeV]	125	10	250	1500
Bunch charge	[nC]	0.14-1.4	1.2	3.2	0.6
Peak current	[kA]	1700	300	1.3	12.1
Energy spread (rms)	[%]	0.1	0.85	0.12	0.34
Bunch length (rms)	[µm]	0.01-0.1	0.48	300	44
Bunch size	$[\mu m]$	0.01	3	0.47	0.045
(rms)		0.01	2	0.006	0.001
Pulse rate \times	[Hz]×	$100 \times$	30×	$5 \times$	50×
Bunches/pulse	$N_{\rm bunch}$	1	1	1312	312
Beamstrahlung	Xav	969		0.06	5
Parameter	$\chi_{\rm max}$	1721		0.15	12
Disruption	$D_{x,y}$	0.001-0.1		0.3	0.15
Parameters		0.001-0.1		24.4	6.8
Peak electric field	[TV/m]	4500	3.2	0.2	2.7
Beam power	[MW]	0.002-0.02	10^{-4}	5	14
Luminosity	$[cm^{-2} s^{-1}]$	6×10^{30} -4 × 10^{32}		10 ³⁴	10 ³⁴

S. Corde, yesterday

B. Hidding, yesterday

Motivation for generating stable, sub-um beams

Science Applications:

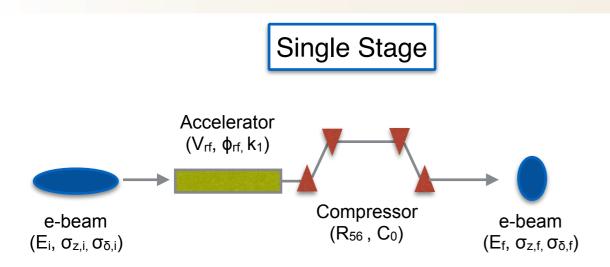
- Beam physics towards new operating regimes in existing and next generation X-FELs (BES)
- Beam physics towards collider with suppressed beamstrahlung (HEP)
- Support for high brightness beams from Plasma Wakefield (HEP)
- Gamma ray source based filamentation (NNSA)
- High average power UV lithography source (Semiconductor industry)

	PHYSICAL	REVIEW LETTER	RS 122, 190404 (2019)			
Prospect	of St		Key ch	allenges:		and the obligation
V. Yakimenko, ¹	·* S. N	Hov	v to sufficiently lin	earize the c	compression	beam m in Al S. Corde, yesterday
Paramete(a)[Unit]CBeam energy[GeV]Bunch charge[nC]0.Peak current[kAeollisionEnergy spread[%]one	14-1.4	eservir	ig the longitudinal	and transve	erse beam quality	y ₽
(rms) Bunch size [µm]	01–0.1 0.01 0.01	Ensi	uring stable and p	redictable b	eam delivery	
Pulse rate × Bunches/pulse Beamstrahlung $[Hz] \times$ N_{bunch} χ_{av} D_{av} Σ_{av} Parameter Disruption χ_{max} $D_{x,y}$ 0.0 $\Omega_{r,y}$ Parameters Peak electric field $[TV/m]$ fieldBeam power $[MW]$ 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5× 50× 1312 312 0.06 5 0.15 12 0.3 0.15 24.4 6.8 0.2 2.7 5 14	S. S. M.	Ultrabrig injected l		
	$\times 10^{30}$ -4 $\times 10^{32}$	10 ³⁴ 10 ³⁴				

Motivation for generating stable, sub-um beams

Science Applications:

- Beam physics towards new operating regimes in existing and next generation X-FELs (BES)
- Beam physics towards collider with suppressed beamstrahlung (HEP)
- Support for high brightness beams from Plasma Wakefield (HEP)
- Gamma ray source based filamentation (NNSA)
- High average power UV lithography source (Semiconductor industry)


Approaches to improved stability

- Alternating sign multi-stage compression (equivalent to FODO focusing concept)
 - Chirpers: off-crest RF, wakefields, IFEL
 - Compressors: ballistic, chicane, dog-leg, zig-zag, wiggler
- Stabilization from self induced wakes (longer bunch => smaller wake induced chirp)
- Correct treatment of 3D CSR effects

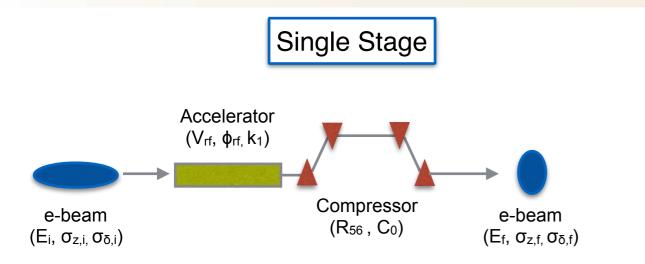
Goal: Design for ~ GeV, 10nm long bunches (10pC, 1MHz CW) Understanding stability with codes that are benchmarked with 400nm beams at FACET-II

Bunch length jitter in single vs two-stage compression

SLAC

For linear compression (Acc. Handbook 4.5):

 $\sigma_{z,f}^2 = \sigma_{z,i}^2 (1 + k_1 R_{56})^2 + \sigma_{\delta,i}^2 R_{56}^2 (E_f / E_i)^2 \approx (1 + k_1 R_{56})^2 \sigma_{z,i}^2$

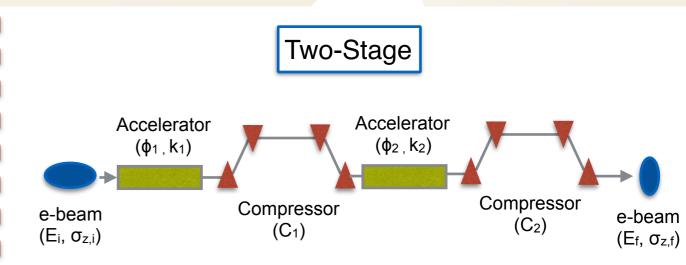

The bunch length jitter can be written in terms of the phase jitter (assuming $C_0 >>1$ and $\varphi_{rf} <<1$)

$$\frac{\Delta\sigma_{z,f}}{\sigma_{z,f}} = (C_0 \mp 1) \cot \phi_{rf} \Delta \phi_{rf} \approx C_0 \frac{\Delta\phi_{rf}}{\phi_{rf}}$$

 $\label{eq:constant} Jitter \propto C_0$ Cannot get stability and short bunches simultaneously

Bunch length jitter in single vs two-stage compression

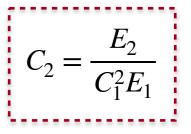
-SLAC


For linear compression (Acc. Handbook 4.5):

$$\sigma_{z,f}^2 = \sigma_{z,i}^2 (1 + k_1 R_{56})^2 + \sigma_{\delta,i}^2 R_{56}^2 (E_f / E_i)^2 \approx (1 + k_1 R_{56})^2 \sigma_{z,i}^2$$

The bunch length jitter can be written in terms of the phase jitter (assuming $C_0 >>1$ and $\varphi_{rf} <<1$)

 $\frac{\Delta\sigma_{z,f}}{\sigma_{z,f}} = (C_0 \mp 1) \cot \phi_{rf} \Delta \phi_{rf} \approx C_0 \frac{\Delta\phi_{rf}}{\phi_{rf}}$

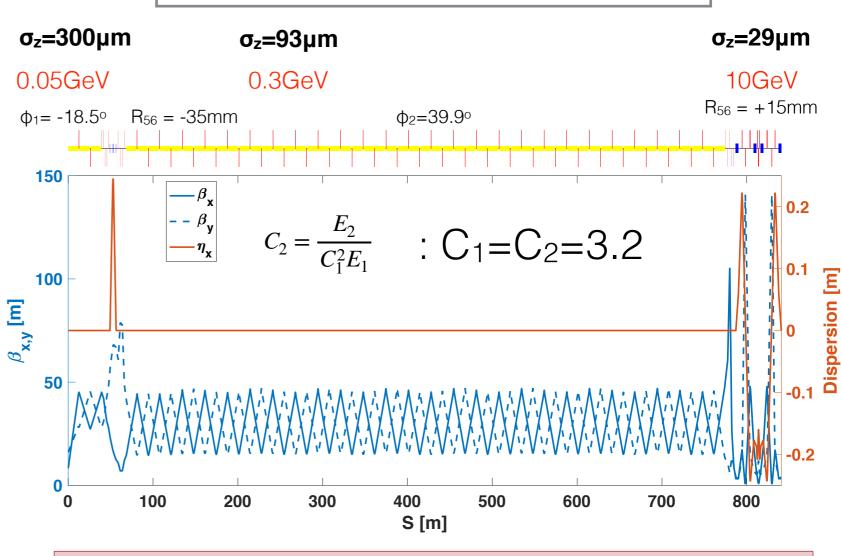

 $\begin{array}{l} \text{Jitter} \propto C_0 \\ \text{Cannot get stability and short bunches simultaneously} \end{array}$

For two stages, if $C_1, C_2 >>1$ and $\Phi_1, \Phi_2 <<1$:

$$\frac{\Delta \sigma_z}{\sigma_z} = \left[C_1^2 E_1 / E_2 - 1 / C_2 \right] \frac{\Delta \phi_1}{\phi_1} + \left[C_1 C_2 E_1 / E_2 - 1 / C_1 \right] \frac{\Delta \phi_2}{\phi_2}$$

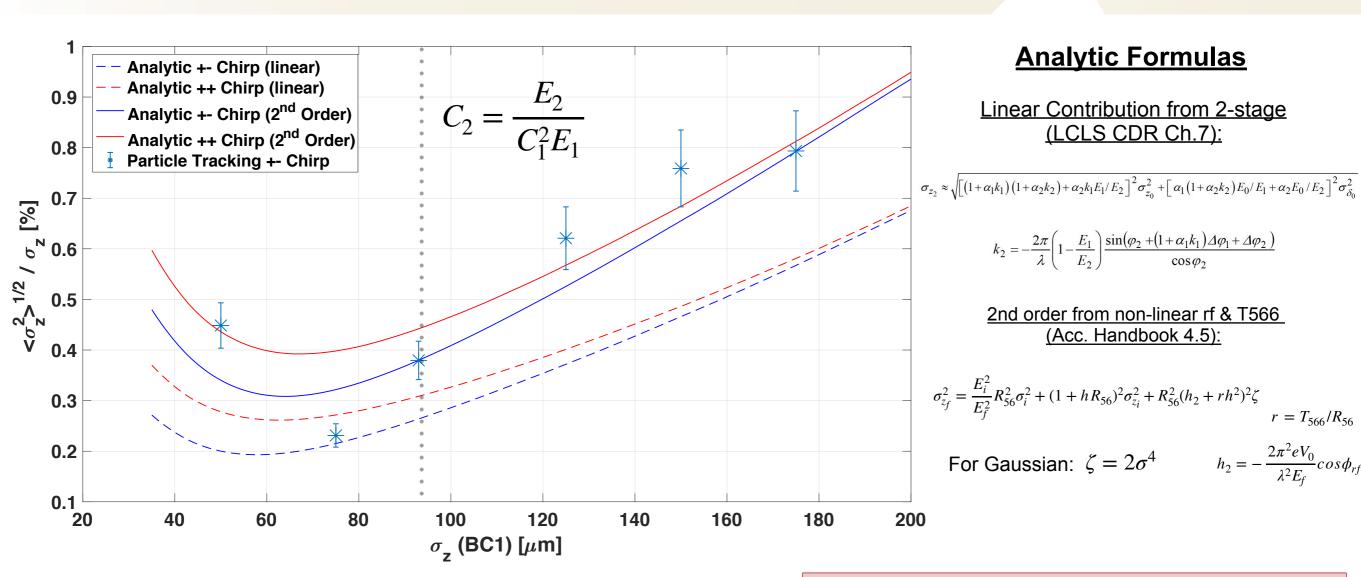
This provides a condition on C_1 , C_2 to minimize the impact of the phase jitter on the bunch length jitter.

Jitter can be minimized by choosing (C_1, C_2, E_1, E_2)


Simulations of 2-stage compression for 10 GeV beam

CI	
JL	

Parameter	Units	Value
RF Freq	f _{rf} (Hz)	2856
On-Crest rf Voltage	V ₀ (MV/m)	20
Initial Energy	E ₀ (MeV)	50
Stage Energy	E _{1,2} (GeV)	0.3,10
Initial Bunch Length	σ _z (mm)	0.3
Initial Energy Spread	δ _{E,i} /E (rms, uncorrel.)	3.3E-05
Initial Emittance	γε _{x,y} (µm-rad)	0.3
Bunch Charge	Q (pC)	10


•	Apply randor	n jitter to each	cavity Δφ +/- 0.1°
---	--------------	------------------	--------------------

- Track 10⁵ MP * 100 random seeds
- rms Bunch length jitter: $\Delta \sigma_z$
- rms Bunch arrival jitter: Δz

Tracking simulations include effect of wakefields, RF curvature, nonlinearity in compression beyond simple linear formulas

RF Phase Jitter results

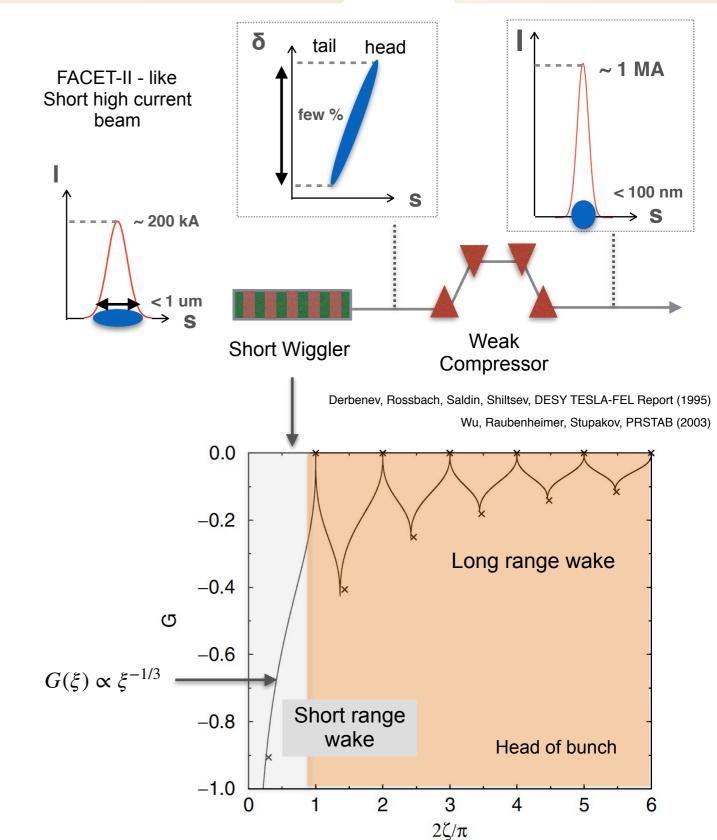
- Fix final bunch length at 29µm, vary C₁/C₂ ratio by adjusting ϕ^1, ϕ^2
- For more compression scale charge and use L₂ wakes to passively increase chirp to further compress in BC2

Minimum jitter close to analytic formulas.

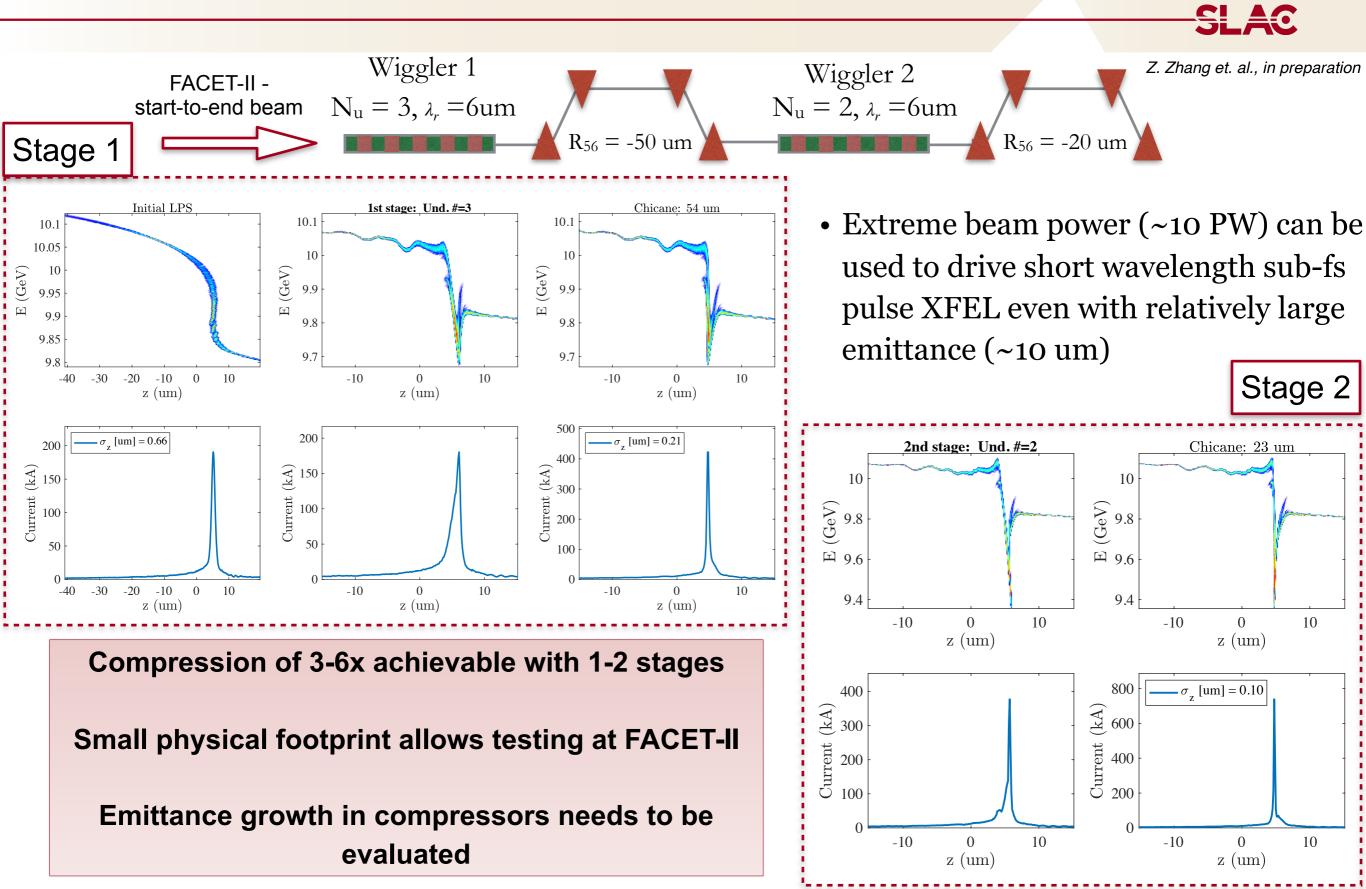
Wakefields can be used to further shorten bunch length

Possible bunch length jitter tests at FACET-II

Start-to-end Tracking + σ_z=28-1.5 μm $\sigma_z = 46 \mu m$ $\sigma_z = 300 \mu m$ BC20 E=8.2 GeV ISR, CSR, LSC L1 - φ=-90° BC14 OFF BC11 *E=135 MeV* R56 = -46mmL2 - φ=54° R56 = 5mmL3 - φ=54° Mean Energy = 8.172 GeV 700 0.15 0.5 dP/P (%) $\beta_{\mathbf{x}}$ 0.1 $|\boldsymbol{\beta}_{\mathbf{y}}|$ 600 0 C1=6.5 C2=1.6 $\eta_{\mathbf{x}}$ 0.05 **500** -0.5 0 [m] -0.05 co.0-Dispersion -0.15 E 400 ^{λ,×} θ 300 -40 -20 0 20 40 **z (μm)** $\sigma_{z} = 1.5 \text{ um l(pk)} = 12.94 \text{ kA}$ 200 (kA) I (kA -0.2 100 -0.25 5 0 -0.3 0 100 200 300 400 500 600 700 800 900 1000 S [m] Ω -40 -20 0 20 40 **z (μm)**

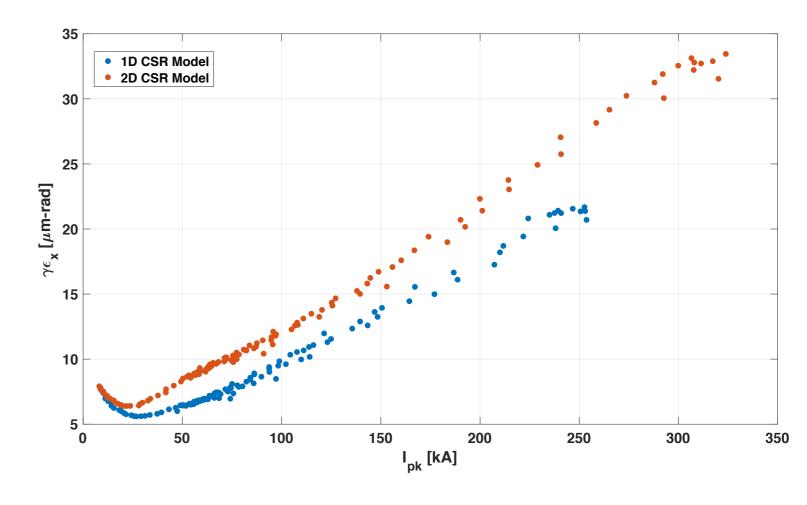

> 10x reduction in bunch length jitter for two-stage compression compared to nominal FACET-II config with similar bunch length

RMS Jitter	2-Stage (RF only)	2-Stage (RF+wakes)	3-stage nominal FACET-II
Δσ _z /σ _z (%)	2.9	3.3	48.4
Δz (µm)	16.1	10.1	30.0


CSR-based compression for sub 100nm mega Amp beams

- CSR wake generated by a *short bunch* in a *short wiggler* applies
 strong chirp on the beam.
- Strongly chirped bunch through weak
 compressor (-ve R₅₆) to achieve subum bunches
- Experimentally studied at low charge (XLEAP) with data matching theory/ simulations.

Large chirp from passive CSR in wiggler allows strong compression with weak chicane



Example calculation for FACET-II

Theoretical challenges for CSR calculation high current beams

- For FACET-II parameters at full compression show departure between 1D & 2D CSR effects in last BC20 dipole
- Recent theoretical work on 2D-3D CSR is examining these issues, e.g. Y. Cai PRAB 20, 064402 (2017), G. Stupakov, Proc. IPAC TUZZPLS3 (2019)

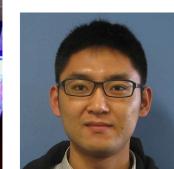
Study of 2D/3D CSR needed to properly account for high current effects

Extension of theoretical models is in progress

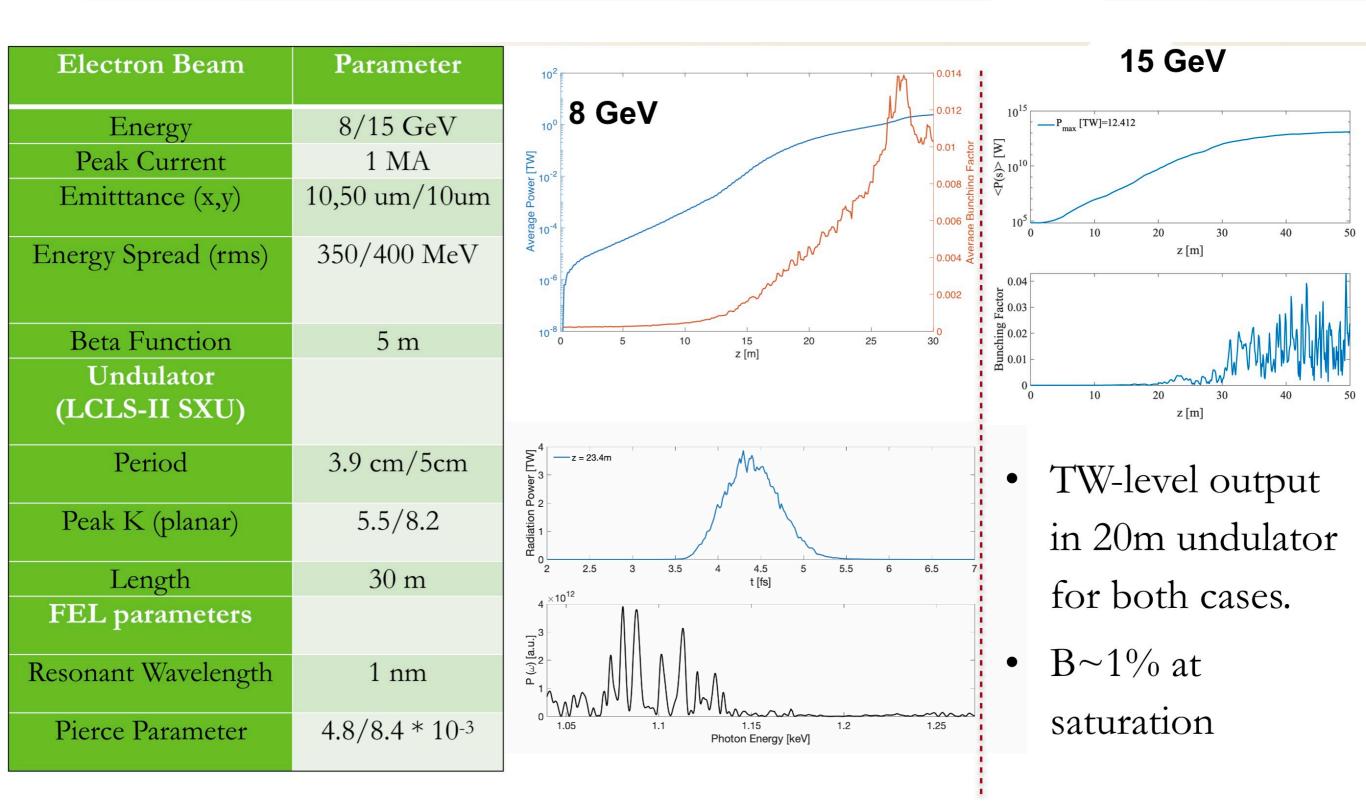
Measurements at FACET-II will provide first comparison between theory and data in this new regime

Summary

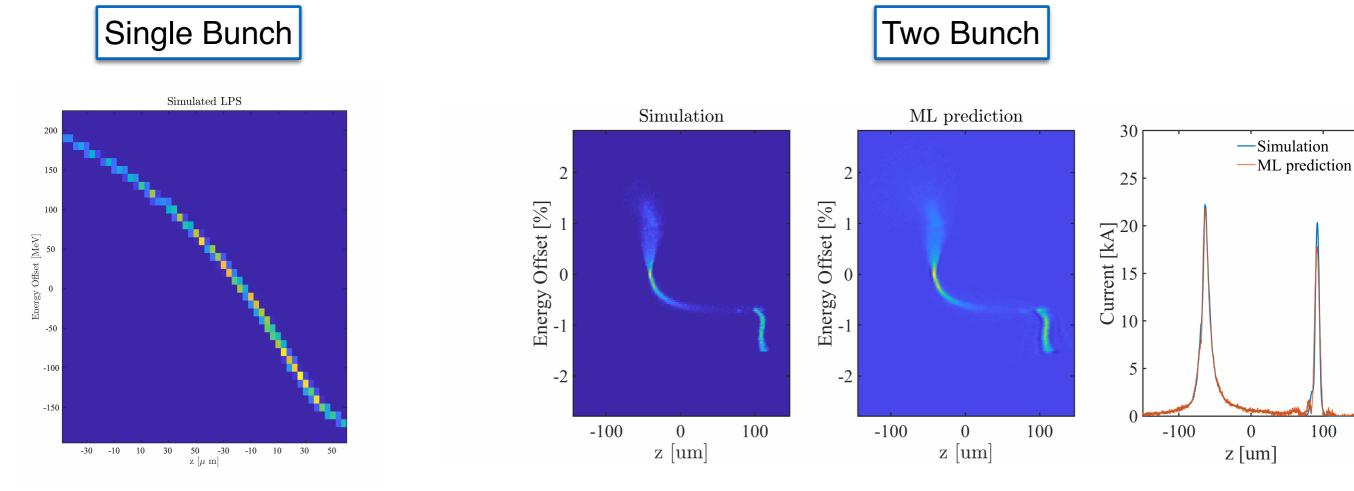
- We are studying the science drivers and concepts of extending the compression of particle beams from sub-um down to ~10 nm (with > MA current)
- Key challenges are:
 - How to sufficiently linearize the compression
 - Preserving the longitudinal and transverse beam quality
 - Ensuring stable and predictable beam delivery
- Specific research programs under study:
 - •Correct treatment of 2D/3D-CSR, with time efficient modeling codes which allow for optimization studies
 - •Novel approaches to compression, e.g. via high gradient chirp sources like IFELs
- •FACET-II will enable testing concepts for extreme compression and provide an opportunity for studying the associated physics and highlighting the major challenges
- This effort will support SLAC's role as a world leading center for electron accelerator physics and matches SLAC's annual lab plan by developing technologies for "brighter X-rays for photon science" and "advancing the luminosity and energy frontiers for future colliders"



SLAC



...see you in the future FACET-III Science Workshops


Bonus slides

FEL Simulation for extreme compression of FACET-II beam

Dancing beams @ FACET-II

SLAC

100