Long term wake evolution: heating & ion wakes

J.Vieira¹, T. Silva¹,

R. A. Fonseca¹, L.O. Silva¹, W.B. Mori², M. Downer³, M. Hogan⁴, V. Yakimenko⁴

GoLP / Instituto de Plasmas e Fusão Nuclear

Instituto Superior Técnico, Lisbon Portugal

² University of California, Los Angeles USA

³ University of Texas, Austin **USA** (also at HZDR, Dresden, **Germany**)

⁴ SLAC, Stanford, **USA**

web.ist.utl.pt/**jorge.vieira** || **epp**.tecnico.ulisboa.pt || golp.tecnico.ulisboa.pt

OSIRIS 3.0

osiris framework

- Massivelly Parallel, Fully Relativistic Particle-in-Cell (PIC) Code
- Visualization and Data Analysis
 Infrastructure
- Developed by the osiris.consortium \Rightarrow UCLA + IST

code features

- Scalability to \sim 1.6 M cores
- Dynamic Load Balancing
- GPGPU and Xeon Phi support
- Particle merging
- · QED module
- Quasi-3D
- Current deposit for NCI mitigation
- Collisions
- Radiation reaction
 - Ponderomotive guiding center

Jorge Vieira | FACET ii Science workshop, SLAC | October 19, 2017

Ricardo Fonseca

ricardo.fonseca@tecnico.ulisboa.pt **Frank Tsung** tsung@physics.ucla.edu

http://epp.tecnico.ulisboa.pt/ http://plasmasim.physics.ucla.edu/

Ion motion in plasma wakefield accelerators

Long drivers self-modulated proton driven wakefield accelerator

- important when beam length ($\sigma_z)$ is comparable to ion skin depth (c/ $\omega_{\text{pi}})$
- disrupts acceleration structures J.Vieira et al. PRL 2011
- may have strong impact on repetition rate A. Sahai et al. 2017

Short drivers

plasma wakefield accelerator in the blowout regime

- influences emittance evolution for tightly focused drivers plasma accelerators
 W. An et al. PRL 2017
- may have strong impact on repetition rate

Need to explore the physics of ion motion experimentally and theoretically.

Ion motion in the proton driven plasma wakefield accelerator

Ion motion in the nonlinear blowout regime

Conclusions & future directions

ion motion can suppress plasma wakefields in the linear regime

Stable, hosing free self-modulation of long particle bunches

Self-modulated particle bunch beamlets

J.Vieira et al. PRL 112 205001 (2014)

AWAKE experiment at CERN

ion motion can suppress plasma wakefields in the linear regime

Nearly hollow plasma channel driven by the ion dynamics

Model for the ion motion in narrow wakefields

Evolution of the ion density

ion motion equation (momentum+continuity eqs)

$$m_i \left[c^2 \frac{\partial^2}{\partial \xi^2} - c_s^2 \nabla^2 \right] n_i = -n_0 Z \nabla \cdot \mathbf{F}_p$$

- speed of light frame: ξ =x-ct
- $F_{p\perp} \gg F_{p\parallel}$ since $\sigma_z \gg \sigma_r (\partial_r \gg \partial_z)$
- ions move radially: $\mathbf{F}_{\mathbf{P}} = \langle \mathbf{E}_{\perp} \rangle$
- Neglect temperature (c_s=0)

simplified model for ion response

$$m_i c^2 \frac{\partial^2 n_i}{\partial \xi^2} = -\frac{n_0 Z e^2}{4 m_e \omega_p^2} \nabla^2 \langle E_r \rangle^2$$

 $\boldsymbol{\hat{E}_r}$ is the envelope of the plasma radial electric field

Analytic formulas at early times

leading order expansion $O(\xi^3)$

$$n_i = n_{i0} \left[1 - \frac{Ze}{m_i c^2} \frac{\xi^2}{2} \nabla \cdot \langle E_r \rangle + \mathcal{O}(\xi^3) \right]$$

ion motion determined by E_r averaged over the fast (electron) time scales

nonlinear wakefield theory for narrow beams

$$E_r^{\xi > \sigma_z} = \frac{\hat{E}_r \cos \phi}{1 + \nabla_r [e\hat{E}_r / (m_e \omega_p^2)] \cos \phi}$$

- $\hat{E}_r[n_b(r)]$ is the wakefield amplitude
- Dawson sheath model in cylindrical geometry
- phase $\Phi = \omega_p \xi/c$

Onset of the ion motion and wavebreaking

Ion motion induces wavebreaking

electron and ion density from OSIRIS simulations

- trajectory crossing occurs when ion motion becomes significant
- electron heating and wakefield suppression
- wavebreaking time $\sim (m_i/m_e)^{1/2}$

Ion motion mitigation

position ξ_{crit} is where the ion density becomes twice the background plasma

$$\frac{\xi_{\rm crit}}{\sigma_z} = \frac{c^2}{\omega_p^2 \sigma_z^2} \left(\frac{m_i}{2m_e Z}\right)^{1/2} \left[\frac{4\pi m_e \omega_p^2}{e\nabla_r \langle E_r \rangle} + \mathcal{O}(\nabla_r \langle E_r \rangle)\right]$$

- $n_b/n_0 \sim 10^{-2}$ and $eE_r/m_e \varpi_p \sim 10^{-2}$
- $m_i/m_e = 1836$ and Z = 1
- Ion motion is important: $\xi_{\text{crit}} \sim 200 \text{c}/\omega_{\text{p}} \sim \sigma_{z}$

Ion motion mitigation strategy: use heavier ions

Ion motion in the proton driven plasma wakefield accelerator

Ion motion in the nonlinear blowout regime at SLAC FACET

Conclusions & future directions

T. Silva et al. (2017)

Ion motion at SLAC FACET

Regimes differ drastically

SLAC electron and plasma parameters

- Energy: 10 GeV
- $\sigma_r \sim$ 10's μ m (~1 c/ ω_p)
- $\sigma_z \sim 10$'s μ m (a few c/ ω_p)
- $n_b/n_0 \sim 1$

CERN self-modulated proton driven wakefields

- Energy: 500 GeV
- $\sigma_{\rm r} \sim$ 100's $\mu {\rm m}$ (less than 1 c/w_p)
- $\sigma_z \sim 10 \text{ cm} (a \text{ few } 100^{\circ} \text{s c/}\omega_p)$
- $n_b/n_0 \sim 10^{-2}$

Plasma wakefields at SLAC

strongly nonlinear blowout regime

ion motion is absent within the first few plasma wavelengths

T. Silva et al. (2017)

Ion motion at SLAC FACET

Regimes differ drastically

SLAC electron and plasma parameters

- Energy: 20 GeV
- $\sigma_r \sim 10$'s μ m (a few c/ ω_p)
- $\sigma_z \sim 10$'s μ m (a few c/ ω_p)
- $n_b/n_0 \sim 1$

CERN self-modulated proton driven wakefields

- Energy: 500 GeV
- $\sigma_{\rm r} \sim$ 100's $\mu {\rm m}$ (less than 1 c/w_p)
- $\sigma_z \sim 10 \text{ cm} (\text{a few } 100^{\circ} \text{s c/}\omega_p)$
- $n_b/n_0 \sim 10^{-2}$

Plasma wakefields at SLAC

T. Silva et al. (2017)

Onset of the ion motion

Evolution of the ion density

Numerical model

$$m_i \frac{d^2 r_i}{dt^2} = eZ \langle E_r \rangle$$

Key structures:

- generation of nearly hollow channel off-axis
- plasma filament on-axis

T. Silva et al. (2017)

Expansion dynamics

Expansion velocity - wave breaking

ion expansion velocity is related to the onset of wave breaking

- T_{W-B} dominated by ion motion time (lower mass ratios)
- T_{W-B} due to nonlinear e- oscillations (higher mass ratios)

Late times - shock(shell) formation

When wave breaking is dominated by the ion motion:

 $T_{W-B} \sim (m_i/m_e)^{1/2}$

Ion expansion velocity estimate:

 $v_{exp} \sim < E_r > (m_e/m_i) T_{VV-B} \sim < E_r > (m_e/m_i)^{1/2}$

Simulations

T. Silva et al. (2017)

Expansion dynamics

Expansion velocity - wave breaking

ion expansion velocity is related to the onset of wave breaking

- T_{W-B} dominated by ion motion time (lower mass ratios)
- T_{W-B} due to nonlinear e- oscillations (higher mass ratios)

Late times - shock(shell) formation

T. Silva et *al*. (2017)

Jorge Vieira | FACET ii Science workshop, SLAC | October 19, 2017

8 Radius [R₀] 12

Experiments at SLAC FACET

ion expansion times are at the ns time scales for Hydrogen and Lithium consistent with theory and simulations

T. Silva et al. (2017)

Formation of the on-axis plasma filament

Confinement of on-axis ion filament

stability of the on-axis plasma filament

on-axis negative electric field may prevent on-axis ion filament defocusing

Electron re-circulation

electron phase-space distribution shows electron recirculation around the plasma

on-set of on-axis electric field coincides with electron recirculation around the plasma

T. Silva et al. (2017)

Ion motion in the proton driven plasma wakefield accelerator

Ion motion in the nonlinear blowout regime

Conclusions & future directions

Ion motion due to average radial plasma electric field

In the self-modulated wakefield accelerator the ion motion suppresses the instability and acceleration

In the plasma wakefield accelerator the ion motion can limit the maximum repetition rate

Future work

effect of the plasma radius on the stability of the on-axis ion filament late time evolution of the ion channel expansion

Thank you!

