Laboratory astrophysics with electron-positron beams at FACET-II

- Interaction of fireball beam with plasma: transition from oblique and Weibel instabilities
- Current-driven magnetic field amplification

Conclusions

Plasma processes shape high-energy astrophysical environments

- Span a wide range of scales and plasma conditions:
 - non-relativistic (v = 100 1000 km/s) to highly relativistic (γ = 10⁶)
 - weakly magnetized to highly magnetized
- Can amplify magnetic fields and accelerate particles to very high energies: up to 10²¹ eV
- Emit radiation across entire EM spectrum: radio to γ-rays
- Significant progress in understanding of non-relativistic systems from solar system, but studies of highly relativistic environments are limited

The relativistic fireball model for GRBs

SLAC

N. Gehrels, L. Piro, and P.J.T. Leonard, Scientific American (2002) R. Blandford & D. Eichler, Physics Reports 154, 1 (1987)

Which collisionless processes (plasma instabilities) mediate the slow down of energetic flows, amplification of B-fields, and the acceleration of particles?

We want to understand interaction of relativistic collisionless plasma flows

SLAC

Simulation setup for interaction of two semi-infinite plasmas

6000 c/ω_{pi}

Relativistic collisionless shocks are good particle accelerators

Weibel instability (CFI) dominates in unmagnetized relativistic plasmas

plasma flows into magnetic energy

E. S. Weibel, PRL 2, 83 (1959); B. D. Fried, Phys. Fluids 2, 337 (1959)

A. Gruzinov & E.Waxman, APJ 511, 852 (1999); M. Medvedev & A. Loeb, ApJ 526, 697 (1999)

- L. O. Silva et al., ApJ 596, L121 (2003)
- A. Spitkovsky ApJ 673, L39 (2008)

F. Fiuza | October 20, 2017 | FACET-II Workshop

SLAC

Long-term evolution is not yet well understood

F. Fiuza et al., PRL 108, 235004 (2012)

How do current filaments break and lead to onset of turbulence?

SLAC

- What is the long-term fate of Weibel-driven B-fields?
- How do CRs amplify ambient field at large scales?

CRs current-driven magnetic field amplification (Bell instability)

SLAC

Bell instability leads to non-resonant amplification of circularly polarized waves

S. G. Lucek, A. R. Bell, MNRAS 314, 65 (2000); A. R. Bell, MNRAS 353, 550 (2004)

Beam-plasma interaction depends on the plasma conditions

SLAC

We want to understand the plasma physics that governs these different regimes

- A. Bret, L. Gremillet, M. Dieckmann, Phys. Plasmas 17, 120501 (2010)
- L. Sironi, A. Spitkovsky, J. Arons, ApJ 711, 22 (2013)
- A. Stockem, F. Fiuza et al., Sci. Reports 4, 3934 (2014)

F. Fiuza | October 20, 2017 | FACET-II Workshop

FACET-II experiments could probe interplay between different instabilities in the relativistic regime for the first time

SLAC

Range of parameters: $n_b/n_0 = 0.01 - 1$ $\gamma_b = 10^3 - 10^4$ $B_0 = 1-10 T$

- First experimental demonstration of these instabilities in relativistic regime
- Explore competition of modes in linear regime and nonlinear stage for a wide range of parameters
- Identify dominant radiation mechanisms
- Provide careful benchmark for numerical and theoretical models

Fireball beams in the lab

e-e+ fireballs: astrophysics in the laboratory

Beam filamentation & B-field generation with 29GeV fireballs @ SLAC

* P. Muggli, S. F. Martins, N. Shukla, J. Vieira and L. O. Silva, arXiv: 1306.4380 (2013)

Filamentation in the lab: avoid competing mechanisms

simulations performed considering fireball bunches with < I GeV

Thermal spread suppresses CFI

filamentation dominates if thermal beam spread is sufficiently small

$$p_{\perp th} \ll \gamma_b \left(\frac{c\Gamma_{\rm CFI}\sigma_{\perp}^2}{L_{\rm growth}}\right)^{1/2} \propto \gamma_b^{3/4}$$

expansion rate smaller than growth rate)

Role of electrostatic instabilities

oblique instability dominates for n_b/n₀«I $\frac{\Gamma_{\text{Oblique}}}{\Gamma_{\text{CFI}}} = \frac{\sqrt{3}}{2^{4/3}} \frac{1}{\beta_b} \left(\gamma_b \frac{n_0}{n_b}\right)^{1/6}$ (filamentation vs oblique instability competition)

oblique

N. Shukla et al. submitted to JPP (2017)

Current filamentation leads to excitation of nonlinear wake

Polarisation as a diagnostic for the filamentation instability

2D simulations, periodic boundaries, 10 MeV fireball

Circularly polarised astro bursts

recent observation of circularly polarised xray bursts [Weirsema et al., Nature, **509**, 201 (2014)]

filamentation instabilities consistent with observations for:

- large mass ratios
- magnetised configurations

U. Sinha et al. to be submitted to PRL (2017)

Physical mechanisms

- large mass ratios required for stable filaments at the electron scale
- external B fields induce overall electron rotation along filament

Bell instability driven by e-beam in the lab

Bell instability dominates long-term interaction for $n_b/n_0 \sim 0.01$ - 0.4 and $v_A/c \sim 10^{-3}$ - 10^{-1}

Non-resonant B-field amplification by FACET-II beam

SLAC

Conclusions

Relativistic beam-plasmas can support a wide range of instabilities which are relevant for astrophysical environments but their longterm evolution is not yet well understood

- FACET-II experiments can probe for the first time some of these processes: e.g. competition between oblique, Weibel, Bell instability
- PIC simulations illustrate the ability to excite and probe these instabilities for idealized FACET-II parameters

More detailed studies are needed to address exact experimental conditions and identify most appropriate diagnostics

Acknowledgements

- E. P. Alves (SLAC)
- J. Vieira, N. Shukla, U. Sinha, R. A. Fonseca, L. O. Silva (IST)
- W. Mori (UCLA)

- Access to OSIRIS 3.0 provided by the **OSIRIS Consortium (UCLA/IST)**
- Simulation results obtained at Vulcan (LLNL) and Mira (ANL)
- Financial support from **DOE Early Career Award**

