

Ionization Injection- What We Have Learned and Next Steps

Navid Vafaei-Najafabadi

Stony Brook University

Synthesis

- Ionization injection can be detrimental or beneficial in a PWFA
- We encountered the detrimental effects of ionization injection in the form of heavy beam loading, occurring through distributed injection of charge (dark current) along a Rb plasma
- The beneficial effects of ionization injection appeared in the form of an injected beam with micron scale emittance from a drive beam of ~100 micron emittance in experiments with Li plasma. (emittance transformer)
- Simulations show a region of impurity confined to a single betatron cycle yields an electron bunch with micron scale emittance and ~3% energy spread
- FACET II's high current beam provides exciting opportunities for the control of qualities of the injected beam

UCLA

Outline

- Beam loading via distributed injection (Rb plasma)
- Generation of high energy beam with micron scale emittance (Li plasma)
- Localized injection of low emittance, low energy spread beam (Hydrogen plasma)
- FACET II Opportunities

Outline

- Beam loading via distributed injection (Rb plasma)
- Generation of high energy beam with micron scale emittance (Li plasma)
- Localized injection of low emittance, low energy spread beam (Hydrogen plasma)
- FACET II Opportunities

Early history of ionization-injection with SLAC Collaboration

FFTB E-167

♦ Going to shorter bunch led to a large increase of "excess charge"
♦ => trapped e-'s from the He buffer gas.

FACET E-200

◆Large amount of excess charge in Rb plasma

◆Early test using Ar impurity in He buffer.

♦Hint of trapped charge.

Abandoned due to Ar contaminating the Li oven

Oz, et al., Physical Review Letters, 98, 084801 (2007)

UCL

osiris framework

•

- Massivelly Parallel, Fully Relativistic Particle-in-Cell (PIC) Code
- Visualization and Data Analysis Infrastructure
 - Developed by the osiris.consortium \Rightarrow UCLA + IST

JE TÉCNICO LISBOA

Ricardo Fonseca: ricardo.fonseca@tecnico.ulisboa.pt Frank Tsung: tsung@physics.ucla.edu http://epp.tecnico.ulisboa.pt/ http://plasmasim.physics.ucla.edu/

code features

Scalability to ~ 1.6 M cores

UCLA

- SIMD hardware optimized
- Parallel I/O
- Dynamic Load Balancing
- · QED module
- Particle merging
- GPGPU support
- Xeon Phi support

Physics of Ionization Injection of Unmatched Electron Beam $Map \text{ of } \Psi = \frac{e}{mc^2} (\phi - v_{\phi}A_z)$

- Ionization Injection occurs when $\Delta\Psi$ <-1
- In this case, if the electrons are ionized when Ψ_i >0.7
- Beams get injected
- Accumulation of injected charge leads to beam loading

Map of $\Psi = \frac{e}{mc^2} (\phi - v_{\phi} A_z)$ $\int_{0}^{0} \int_{0}^{0} \int_{$

Oz, et al., Physical Review Letters, **98**, 084801 (2007) Pak, et al. Physical Review Letters, **104**, 025003 (2010)

Experiment with Rubidium Plasma Source

Experimental Evidence for Beam Loading

Correlation confirms understanding of transverse dynamics Distributed injection strongly dampens energy gain

Results in 33% reduction in average transformer ratio

Reduction in transformer ratio visually observed

Simulations are consistent with the experimental conclusions

N. Vafaei-Najafabadi, et al., PRL, **112**, 25001 (2014) N. Vafaei-Najafabadi, et al., PRAB, **19**, 101303 (2016)

Outline

- Beam loading via distributed injection (Rb plasma)
- Generation of high energy beam with micron scale emittance (Li plasma)
- Localized injection of low emittance, low energy spread beam (Hydrogen plasma)
- FACET II Opportunities

Limiting Ionization Injection to Ramp

Element	IP (eV)	E _{th} (GV/m)	σ _r * (μm)
RbI	4.17	3.0	103
Li I	5.39	4.7	65.6
Ar	15.8	30	10
Rb II/Ar II	~27.5	53	5.8
He	24.6	62.5	5.0
Li II	75.6	294	1.1

– Values obtained assuming 10% ionization, N=1.8x10¹⁰, and σ_z =30 μ m for the beam

– $\sigma_{\rm r}{}^{*}$ is The spot size of the electron beam needed to ionize the elements

Secondary ionization is limited to helium Ionization injection in a lithium oven is confined to the ramp

Experimental Results from the 30 cm Plasma

- Injected beam is observed as separate from the main beam
- Injected beam's divergence is ~4X smaller than the drive beam
- Injected beam is accelerated from 0 to 10 GeV

Experimental Results from 130 cm Plasma

UCL

- Energy gain continues to up to 33 GeV in 130 cm (25 GeV/m) plasma
- Low emittance beam verified to be injected charge due to their response to ionizing laser and transverse displacement (Erik Adli's talk)

Evolution of Twiss Parameters

From Transfer Matrix to evolution of Twiss parameters

$$R = \begin{bmatrix} C & S \\ C' & S' \end{bmatrix} \longrightarrow \begin{bmatrix} \beta_f \\ \alpha_f \\ \gamma_f \end{bmatrix} = \begin{bmatrix} C^2 & -2CS & S^2 \\ -CC' & CS' + SC' & -SS' \\ C'^2 & -2C'S' & S'^2 \end{bmatrix} \begin{bmatrix} \beta_i \\ \alpha_i \\ \gamma_i \end{bmatrix}$$

Free Propagation in Space:

$$\begin{bmatrix} x_f \\ x'_f \end{bmatrix} = \begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_i \\ x'_i \end{bmatrix} \longrightarrow \begin{bmatrix} \beta_f \\ \alpha_f \\ \gamma_f \end{bmatrix} = \begin{bmatrix} 1 & -2L & L^2 \\ 0 & 1 & -L \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_i \\ \alpha_i \\ \gamma_i \end{bmatrix}$$

Ramp, Foils, Quads

Plasma Ramp: Continuous focusing element with

$$k = k_{beta} = \frac{\omega_p}{c\sqrt{2\gamma}}$$

$$R = \begin{bmatrix} \cos(k \, dz) & \frac{1}{k}\sin(k \, dz) \\ -k\sin(k \, dz) & \cos(k \, dz) \end{bmatrix}$$

Be/Al foil: Multiple Scattering Angle $\Delta \theta^*$

$$\begin{split} \epsilon_{f} &= \sqrt{\epsilon_{i}(\epsilon_{i} + \beta_{i}\Delta\theta^{2})} \\ \beta_{f} &= \frac{\epsilon_{i}\beta_{i}}{\sqrt{\epsilon_{i}(\epsilon_{i} + \beta_{i}\Delta\theta^{2})}} \\ \alpha_{f} &= \frac{\epsilon_{i}\alpha_{i}}{\sqrt{\epsilon_{i}(\epsilon_{i} + \beta_{i}\Delta\theta^{2})}} \qquad \gamma = \frac{1 + \alpha^{2}}{\beta} \end{split}$$

* $\Delta \theta$ = 8.3 µrad for 75 µm Be window and 134 mrad for 5 mm Al

UCL

Emittance Measurement Method

UCL

- Energy slices equivalent except for energy
- Elements affecting beam size measurement
 - Plasma down-ramp
 - 75 μ m Be window
 - Two Quadrupole magnets (QS1,QS2)
 - 5 mm Al window
- ϵ_n , σ_r , α = (5.4 mm-mrad, 1.1 μ m, -0.29) are results of optimization for this case
- Distance to Be window is used as a free parameter in optimization for sanity check

Properties of the Beam Injected in Li Oven

• Highlights:

- Highest energy bunch from a plasma accelerator
- Emittance on the order of mm-mrad
- Energy spread on the order of 10%
- Downside
 - Little control over injection region
- Independent control of injection and acceleration region allows for optimization of parameters

Outline

- Beam loading via distributed injection (Rb plasma)
- Generation of high energy beam with micron scale emittance (Li plasma)
- Localized injection of low emittance, low energy spread beam (Hydrogen plasma)
- FACET II Opportunities

3D Simulation of Ionization Injection

- Beam:
 - N=2x10¹⁰
 - Emittance = 120 mm-mrad
 - $\sigma_r = \sigma_z = 30 \text{ um}$
- H₂ plasma density: 2.5x10¹⁷ cm⁻³
- Envelope oscillation wavelength ~ 1 cm
- The length of the jet set to twice oscillation wavelength
- He concentration: 2.5x10¹⁵ cm⁻³
- Allowed for beam evolution over 3 cm before He region

Helium Electron Properties after 6.2 cm

Total helium charge is 260 pC, most of it almost equally split between the electrons from the two betatron oscillation cycles Peak current ~ 8 kA, FWHM ~ 8 μ m

Phase Space and Emittance

High Energy Beam

 $x_2^{rms} = 1.4 \ \mu m$

$$\begin{aligned} \varepsilon_g &= \sqrt{< x^2 > < x'^2 > - < xx' >^2} \\ \epsilon_n &= \gamma \epsilon_g \\ \gamma &= < \sqrt{1 + \bar{p}^2} > \end{aligned}$$

	ϵ_g (nm)	ϵ_n (mm-mrad)	γ
High γ	2.5	7.1	2802
Low γ	4.1	7.1	1690
Full beam	2.9	6.5	2278

Beams generated from betatron cycles are essentially identical

Injector Design

Hydrogen Plasma Experiment

- ✓ Produced ~40 cm of preionized hydrogen plasma using the 10 TW laser and axilens optic
- ✓ Ionization of the helium impurity in the presence of the wakefield was observed using special line filter for helium

 ✓ Although we observed injected charge, correlation of dark current or injected electrons with helium jet was not observed

Downstream Toroid

Why didn't it work?

- Insufficient field for trapping due to weak electron-beam to plasma coupling (for instance, hydrogen plasma too narrow)
- Partially ionized H₂ beam loaded
- Gainless wake
- Beam did not have strong enough field to ionize helium
 - Possible if the region of plasma did not overlap with helium

Narrowing of Plasma Column

UCL

Wake persists for small filaments, but there is a threshold where trapping no longer happens (in this case Rb/2<R<Rb)

FACET II

- Two important features of FACET II beam for this experiment:
 - High Peak Current
 - Small σ_z

 $\begin{array}{c}
2 \\
1 \\
0 \\
-1 \\
0 \\
50 \\
100 \\
150 \\
\xi (\mu m)
\end{array}$

- Consequences
 - Small injection zone enables very high current for injected beam
 - High peak current means ionization for (nearly) all longitudinal beam slices
 - This will result in an ultrashort, high current beam, but controlling the energy spread will be a primary challenge

"Baseline Comparisons"

UCLA

Injected Charge (preliminary)

Total Q = 260 pC

Q>1nC (Heavily beamloaded on the helium plateau)

Phase space comparison (Preliminary)

Conclusions

- Ionization injection can be detrimental or beneficial in a PWFA
- We encountered the detrimental effects of ionization injection in the form of heavy beam loading, occurring through distributed injection of charge (dark current) along a Rb plasma
- The beneficial effects of ionization injection appeared in the form of an injected beam with micron scale emittance from a drive beam of ~100 micron emittance in experiments with Li plasma. (emittance transformer)
- Simulations show a region of impurity confined to a single betatron cycle is enough to act as injection zone to yield an electron bunch with micron scale emittance and ~3% energy spread
- FACET II's high current beam provides exciting opportunities for the control of qualities of the injected beam

The End

Rb II Beam Loading of The Wake in Simulation

Injection

- Injection
- Energy Loss = 8 GeV
- Unloaded Energy gain = 17.5 GeV
- Loaded Energy gain = 12 GeV ٠
- Beam loading reduced R from 2.2 to 1.5

UCLA

- Unloaded Transformer Ratio: 2.7
- Loaded Transformer Raio: 1.6
- Beam loading reduced energy gain from 82 GV/m to 46 GV/m

Ionization of Helium

Stony Brook University Effect of lonizing Laser

Laser ionized helium electrons outside the bubble where $\Delta\Psi < -1$ is not satisfied

Laser Ionization in Experiments and Length Scaling

30 cm plasma:

- Injected beam observed for beam ionized case
- Peak energy gain ~ 10 GeV
- Injected charge disappears when helium is preionized by laser

UCLA

130 cm plasma:

- Injected beam observed for beam ionized case
- Peak energy gain ~ 34 GeV
- Injected charge disappears when helium is preionized by laser

* Stony Brook University

Effect of Transverse Displacement

Gainless Wake, $\sigma_r = \sigma_{r0}/2=15 \ \mu m$

Neutral H2 ionized, but not trapped

Peak decelerating field ~ 24 GeV/m Peak accelerating field: ~ 4 GeV/m Peak transverse field occurs at r<0.5 c/wp

Injected Beam Observed in H₂

