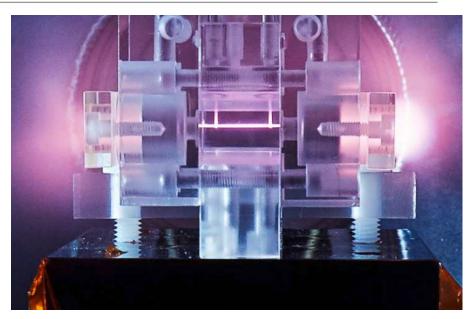
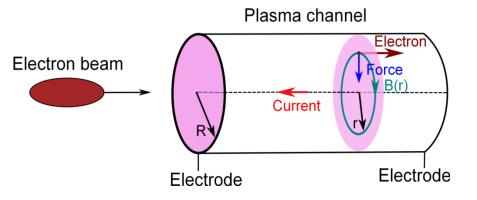
FACET II science workshop | SLAC | October 21 2017

Mapping plasma lenses

JH Röckemann, L Schaper, SK Barber, NA Bobrova, S Bulanov, N Delbos, K Flöttmann, G Kube, W Lauth, W Leemans, V Libov, A Maier, M Meisel, P Messner, PV Sasorov, CB Schroeder, J vanTilborg, S Wesch and J Osterhoff



Motivation


- > Plasma accelerators create sub-µm emittance beams
- > Intrinsic energy spread σ_E of percent level
- > Divergence $\sigma_{x'}$ typically mrad
- > Emittance growth during drift $\rightarrow \epsilon_n \sim \sigma_E \cdot \sigma_{x'}^2 \cdot s$
- > Compact and strong capturing needed
- > APLs provide short focal length
- > Radially symmetric focusing

First experiments: Forsyth et al., *IEEE Trans. on Nucl. Sc.* 12.3 (1965): 872-876.
Target concept: Butleret al., *Phys. Rev. Let.* 89.18 (2002): 185003.
First capillary lens: Van Tilborg, et al., *Phys. Rev. Let.* 115.18 (2015): 184802.
Used in staging: Steinke et al., *Nature* 530.7589 (2016): 190.

Active plasma lens principle

- > Beam passes high current region
- > Radially symmetric magnetic field
- > Gradients of ~3kT/m achieved¹
- > High voltage discharge ignites plasma
- > Gas volume required
- > Wakefields should be avoided

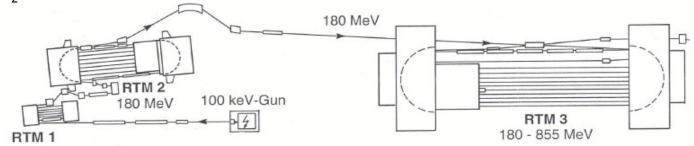
$$B_{\varphi}(r) = \frac{\mu_0 I_0}{2\pi} \cdot \frac{r}{R^2} \longrightarrow \frac{\partial B_{\varphi}}{\partial r} = 0.2 \frac{I[A]}{R[mm]^2} \frac{T}{m}$$

¹Van Tilborg, et al., *Phys. Rev. Let.* 115.18 (2015): 184802.

Probing the quality of plasma lenses

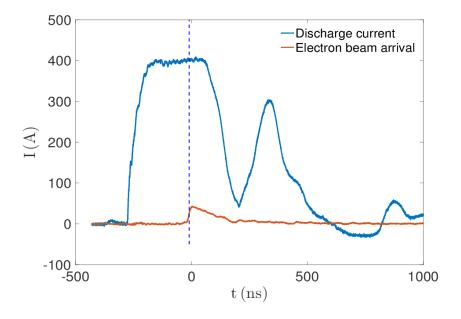
- > Measure shot-to-shot stability
 - Assess gradient stability
 - Assess discharge stability
 - Stable electron beam needed
- > Probe for inhomogeneity
 - Gradient depends on current distribution
 - Inhomogeneity leads to nonlinear focusing
 - Emittance degradation in the plasma lens

$$B_{\varphi}(r) = \frac{\mu_0}{2}(a_1 + a_4 \cdot r^3)r$$


Magnetohydrodynamics simulation

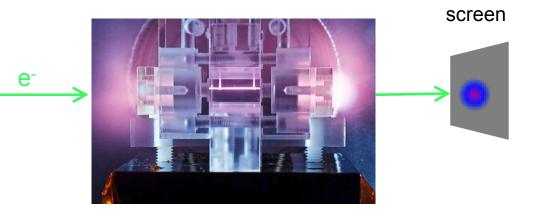
To be published

Courtesy of J. van Tilborg and S. Bulanov

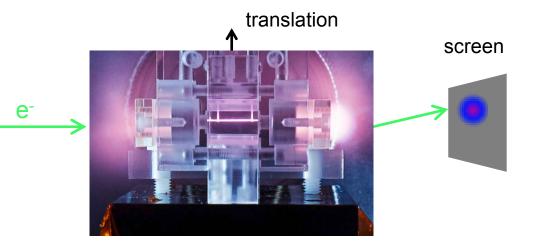

The Mainz Microtron

- >Racetrack Microtron
 - \blacktriangleright E = 855 MeV with $\sigma_{\rm E}$ = 4.10⁻⁵
 - Special operation mode with 10 ns bunch train
 - Current 100 µA no wakefields
 - Norm. Emittance 1.5 mm mrad
 - ► Transverse jitter ~20% of beam size
- > Beamline allowing for H_2 flow

Discharge characteristics


Current profile @20kV

- > Amplitude stability of 1.5 A rms
- > Plateau region of ~250 ns
- > Current plateau tunable up to 1.5 kA
- > Stable in timing: ~1 ns rms breakdown jitter
- > Electron beam arrival monitored
- > Single shot analysis possible


Lens position scan – gradient via dipole kick

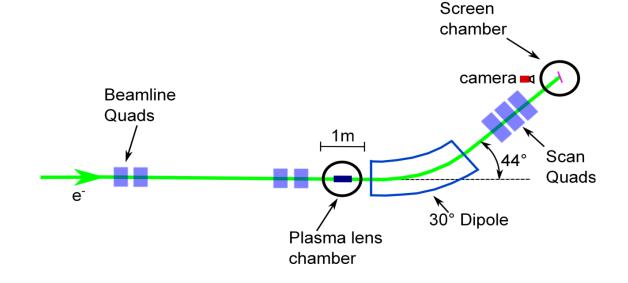
- > Lens position varied transversally
- > Dipole kick introduced
- > Beam position on screen changes
- > Kick yields field kicks yield gradient
- > Position stability \rightarrow gradient stability

Lens position scan – gradient via dipole kick

- > Lens position varied transversally
- > Dipole kick introduced
- > Beam position on screen changes
- > Kick yields field kicks yield gradient
- > Position stability \rightarrow gradient stability

Gradient measurement results

- > Scans using 7 mm long APL
- > Very low transverse jitter
- > Stable discharge and APL
 - ▶ 100 shots per scan point
 - No faulty discharges
- > Higher gradients than expected
 - ► 40% 60% bigger than uniform density


Current [A]	Uniform [T/m]	Linear [T/m]	Polynomial [T/m]
188	150	246 ± 10	265 ± 35
368	294	437 ± 8	475 ± 30
740	592	823 ± 8	886 ± 38

$$I_0 = 2 \pi \int_0^R J(r) \cdot r dr \longrightarrow B_{\varphi}(R) = \frac{\mu_0 I_0}{2\pi R}$$

Emittance measurement - MaMi-B beamline

> Two chambers

- First for plasma lens and screen
- Second for screen
- >Large dipole
 - Introduces dispersion
 - Strong edge focusing
- > Quadrupole triplet for scan
 - Two independent power supplies
 - Low maximum gradient quads

Emittance scan results

- > Scans using 7 mm long APL
- > rms beam size calculated for 100 shots
- > Resolution of ~0.1 mm mrad
- > MaMi-B emittance measured 1.5 mm mrad
- > Emittance increases in APL

	Normalized emittance [mm mrad]		
Current [A]	Measured	Simulated	
188	2.6 ± 0.2	3.1 ± 1.3	
368	3.6 ± 0.2	4.7 ± 1.1	
740	9.5 ± 0.1	7.5 ± 1.1	

Particle tracking simulations

- > Results from offset scans fed into simulation
- >MaMi-like beam sent through field
- > Emittance for different currents and beam sizes
- > Core emittance can be preserved
- > Small beam size favorable

Particle tracking simulations

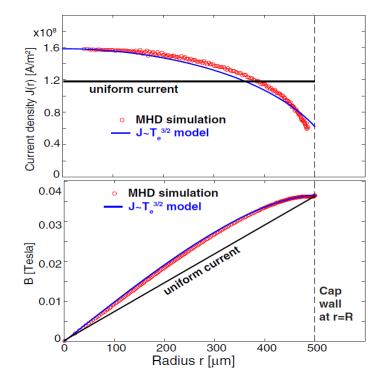
- >Results from offset scans fed into simulation
- >Low emittance beam sent through field
- > Emittance for different currents and beam sizes
- >Core emittance can be preserved in small emittance beams

FACET II considerations

- > High current beams may drive wake
- > Transversally large beam in APL needed
- >Large beam needs large APL for emittane preservation
- > Drive beam final focus
- > Witness beam capturing

Parameters	Driver	Witness
I _{peak} [kA]	200	15
σ _{x,y} [µm]	200	150
n _b [cm ⁻³]	10 ¹⁶	10 ¹⁵
R [mm]	2	2
I ₀ [kA]	16	16
g [T/m]	800	800
n ₀ [cm ⁻³]	5·10 ¹⁶	5.10 ¹⁶
K _{APL} /K _{wake}	10 ⁵	10 ⁶

Summary


> First experiment with a plasma lens in a conventional electron accelerator

- > Direct magnetic field measurement of a capillary plasma lens 823 T/m over 350 µm
- > Stability of discharge and APL assessed in gradient scans very stable
- > Study of emittance preservation shows degradation explained by simulations
- > Emittance preservation possible for relatively small beams
- > Might be a technique worth considering for FACET II program

Thank you for your attention, please ask away!

APLs – a hot topic

- > Recent publication shows heating effects
- > Heating causes pinching of current
- > Higher focusing field for core part of APL

J. vanTilborg et al., PRAB 20, 032803 (2017)