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Brightness Begets Brightness:
Electrons and Photons

Light source revolution due to e- beam

Improvements
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Two orders of magnitude produce qualitatively
new light source, the X-ray Free-electron Laser

— Intense cold beam; instability

Peak Brilliance [Phot./(sec - mrad® - mm? - 0.1% bandw.)]

E,, ; o< exp(z/Lg); L, o< B3

— 8 orders of magnitude photon brightness

Energy [eV]

For needed e-beam, must compress to fs scale
Ultra-bright, A, coherent, fsec light source

— X-ray FEL: many orders of magnitude leap forward
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Ultra-short XFEL pulses: motivation

Tool at atomic electron spatio-temporal scales
— Angstroms-nanometers (¥Bohr radius)

— Femtoseconds (e- motion, Bohr period; femto-
chemistry, etc.)

100 fs accessible with standard approaches

Promising path: ultra-short, low Q electron beam

— Myriad of advantages in FEL and beam physics
* Mitigate collective effects dramatically

— Robust in application: XFEL, coherent optical/IR source
Can also use microbunching...
Spin-off to ultra-high field PWFA!



Beam physics: from plasma to plasma

e Beam at lower energy is single
component relativistic plasma
* Preserve optimized dynamics:
change Q, keeping plasma
frequency (n, aspect ratio) same
. . 1
» Dimensions scaleas 0, < Q"""
— Shorter beam, easier to compress
— Big emittance reduction, easy to focus
— Result: ultra-high brightness beam

J.B. Rosenzweig and E. Colby, Advanced Accelerator Concepts p. 724 (AIP Conf. Proc. 335, 1995).



Ultra-short pulses at SPARX (LNF)
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Chicane bunching after velocity bunching

Use ~1 pC beam for single spike
— SS: cooperation length=bunch length

Short, low emittance beam at final energy 2.1 GeV
g =75%x10"° m-rad o, =600 attoseconds(!)

Very high final brightness
— 2 orders of magnitude! B=2x%x10" A/m2|
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Single Spike X-ray FEL
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e Single spike, > 1 GW peak power
e 480 attosecond rms pulse at 2 nm
 1Sttimein X-ray regime



Example: LCLS w/sub-fs pulse

e Use even shorter 0.25 pC beam, 150 as pulse
— Single spike w/standard LCLS undulator
e Obtain ultra-compact “LCLS” at 4.3 GeV

» Extend energy reach to 83 keV (0.15 A)

Short undulator!
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High interest in FEL community...

low-Q explorations at LCLS
Low emittances at LCLS with 20 pC. Diagnostic limited
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Emittance near calculated thermal emittance limit
20 pC, 135 MeV, 0.6-mm spot diameter, 400 ym rms bunch length (5 A)



Measurements and Simulations for 20-pC Bunch at 14 GeV
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Horizontal projected emittance measured at 10 GeV LCLS FEL simulation at 1.5 A; not single spike.



2 fs beams at temporal
measurement resolution limit

 Coherent transition radiation (destructive)
* Non-destructive: coherent edge radiation (CER)

Spectral intensity (uJ/THz)

QUINDI simulation FACET Il case



Advanced accelerator physics:
focusing ultra-short beams

2 fs (600 nm) beam predicted to have /,=8 kA
Focus to 6,<200 nm (low emittance enables...)

Surface fields  ,p - r,m,c’l, leco,

E =1TV/ml!

TV/m (100 V/A!) in fs unipolar (1/2-cycle) pulse
— New tool for high field-matter interaction (AMO, nuclear)
— FACET I limit ~100 GV/m — emittance too high!



How to focus?
* Very short focal length final focus

e Use ultra-high field permanent magnet quads
— mitigate chromatic aberrations

— FF-DD-F triplet, adjust through quad placement
* Developed 570 T/m PMQ fields
- Need slightly stronger, no problem (Pr gives >1kT/m)
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Collective Beam Field-induced
Tunneling lonization

“Weaker” fields: tunneling

Regime well understood
ADK perturbation theory
Developed for lasers
ADK-based simulation
(OOPIC, Vsim)
Benchmarked to e-beam
experiments (E167 and
successors)

V(x)




1 TV/m Reaches the
Barrier Suppression Regime (BSl)

BSI: e- classically escapes atom V(x)

Previously only reached
experimental by lasers

Theory concentrates on lasers
BSI not well understood

Non-perturbative

Empirical formulas /—\

Fundamental atomic physics tool \/ \

Plasma wakefields...



BSI| ionization occurs in 2 fs case

Extension to unipolar field pulse
— approach of Bauer, et al. in laser context

BSI important above 40 GV/m, but tunneling
nas already been accomplished...

or total ionization trust OOPIC
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TV/m Plasma Wakefield Accelerator

N,

Beam denser than plasma

Very nonlinear plasma dynamics
Pure ion column focusing for e-s
EM acceleration, independent of r
General measure of nonlinearity:
k3

n

~=d4nk,r,N,

<<1, linear regime

> 1, nonlinear "blowout"

Ultra-high brightness, fs beams in plasma
Use 20 pC LCLS beam in high n plasma
In “blowout” regime: total rarefaction of plasma e's

Plasma Electrons in a Q = 20 Case
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Wakes in blown out region
MAGIC simulation of blowout PWFA case



Single bunch excitation at FACET II

Beam must be short and narrow compared to
plasma skin depth o, <&’ o,<k)

In this case O >1implies n,>n,, blowout
With 2 fs FACET Il beam we choose 7,=7x10" em™

~/

-or 20 pC beam, we have (=7

OOPIC simulation of LCLS case
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Beam-field induced ionization
Focus beam to < 200 nm rms
Radial E-field > TV/m

onization studied in Li, H gas (ADK model, which
applies in beam head...)
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Well-focused, dense electron beam

can lead to ion collapse
* Positive ions “focused” by ultra-dense e-beam fields

RMS' for beam_electrons: z-beige r-green
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Non-uniform ion density enhancement Beam mismatch and growth (s-growth)

* Nonlinear fields, emittance growth. Bad for linear
collider applications

e Detect 10-100 keV ions (hydrogen)



Increased brightness within reach

250 MV/m peak field S-band cryogenic
gun with cryostat, focusing magnets

20



Brightness at photocathode

) 21 2Jmaxmec2
Brightness at cathode: B. =755 e
n B~ ¢
In 1D limit, peak current from a pulsed
hotocathode is
P J , = ;C—'Z(EO sin @, )2

Brightness is ' p _2€% (o o ¥
— S11
e,b kBT ( 0 (pO)

C

Lower emission temperature and/or...
Lesson: increase launch field



Dramatically higher gradients in
higher yield strength materials

 SLAC X-band studies on hard Cu, CuAg alloy
show great improvement

* Cryogenic structures give yet higher gradients,
and lower dissipation
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Game cﬁanglng technique for high launch fields
Practical limit (dark current) ~300 MV/m presently



GPT simulation of 200 pC case

* Use long cigar-like beam (10 ps)
* Emittance ¢,=45 nm-rad

— Ten times smaller than previous example
Current I=20 A
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This is six times
what is available at
a reoptimized LCLS
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| Compression is
" : ; ; ; . hard. Use ESASE
microbunching




ESASE results at 100 pC

100 pC (10 ps), 36 nm emittance
Short period cryo-undulator, 2=9 mm, K=1.8
Operation at 14 GeV gives 80 keV X-ray

Saturation in <20 m, with 70 GW peak
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Current profile (10 kA) Energy evolution



Using 10 kA peak microbunched
beam in PWFA

e Utilize quasi-nonlinear (QNL) regime periodic
excitation (bbunching period = plasma period)

n,=25x%10" cm™
* Highly focused beam (22 nm), peak E,>5 TV/m

Resonant ex0|tat|on to >3 TV/m

4 drive pulses + witness



Experimental implementation

e Beam focusing
— Few-100 nm beam demands mini-beta PMQs

* Plasma section
— ~3-30 atm gas jet, with BSI. Start with tenuous gas

— Length ~0.5 mm gives ~GeV AE, “perturbative”

* Beam diagnostics in entirely new regime
— Longitudinal: coherent edge/transition radiation
— Transverse:

* |lonization, appearance intensity
e coherence
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Sub- um beam transverse diagnosis
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Coherent transition radiation imaging reconstruction
expt., A. Marinelli et al., PRL 110, 094802 (2013)

* Measure sub-um beam sizes with coherent
imaging (borrowed from XFEL). Coherent
information down to 100 nm?

Intensity (arbitrary units)




Conclusions

Attosecond e-beams can be reached at low Q

Greatly enhanced beam brightness

— Single spike, compact FELs

— New high field sources, enhance wavelength range

Frontier regime for beams; coherent optical radiation,
lonization, new diagnostics

Enables new frontiers:

— Extreme plasma wakefield accelerators
 TeV/m at 1 atm
* Resonantly driven optical/IR wavelengths (beam is easier, better!)
» Ultra-high field atomic-physics — TV/m unipolar field



