Gamma-ray spectrometer

Science at FACET II workshop

Presented by Félicie Albert Lawrence Livermore National Laboratory

October 19th 2016

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Gamma-ray (and x-ray) spectrometer (and applications)

Science at FACET II workshop

Presented by Félicie Albert Lawrence Livermore National Laboratory

October 19th 2016

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Outline

- Gamma-ray source based on Compton scattering
 - Performance
 - Gamma-ray measurements
 - Applications
- X-ray source based on betatron emission
 - Principle
 - X-ray measurements as a diagnostic of electron beam properties
 - Applications

Narrow band gamma-rays from Compton scattering

Energy-momentum conservation yields 4γ² upshift Compton scattering cross section very small 6 x10⁻²⁵ cm² High photon and electron densities required at interaction point

T-Rex: LLNL's first Compton gamma-ray source

T-Rex properties

Photon flux and divergence

Electron beam and ILS 0.478 MeV gamma-rays

Electron beam only No gamma-rays

Estimations indicate 10⁵ photons/shot (based on calibrations with ¹³⁷Cs source @ 662 keV)

Spectrum measurement

Nuclear Resonance Fluorescence (NRF) can provide isotope-specific contrast

- Incident photon excites nucleus
 MeV
 - Discrete energies
 - Isotope specific
- Nucleus subsequently re-radiates photons
 - NRF lines very sharp (1 eV)
 - Need high brightness narrow band source to detect them
- Applications
 - Isotope specific detection
 - Special Nuclear Materials detection (Homeland security)
 - Nuclear waste assay and detection

NRF transitions are isotope-specific and have large cross sections

Gamma-rays in the 0.5-3 MeV range are both highly penetrating and non activating

Direct detection of ⁷Li NRF line with T-REX

Betatron x-ray radiation

"Betatron x-rays bring focus to a very small, very fast world", LLNL S&T Review, January/February 2014

Modeling

Equation of motion

$$\frac{d\vec{p}}{dt} = -m\omega_p^2 \frac{\vec{r}}{2} + \alpha \frac{mc\omega_p}{e} \vec{u_z}$$

Intensity per unit solid angle and frequence

$$\frac{d^2 I}{d\Omega d\omega} = \frac{e^2 \omega^2}{4\pi c} \left| \int_{-\infty}^{\infty} \vec{n} \times (\vec{n} \times \beta) \, e^{i\omega(t - \frac{\vec{n} \cdot \vec{r}}{c})} dt \right|^2$$

Asymptotic limit

$$\frac{d^2I}{d\Omega d\omega} = \frac{e^2}{3\pi^2 c} \left(\frac{\omega\rho}{c}\right)^2 \left(\frac{1}{\gamma^2} + \theta^2\right) \left[K_{2/3}^2(\xi) + \frac{\theta^2}{(1/\gamma^2) + \theta^2} K_{1/3}^2(\xi)\right]$$

J.D. Jackson, Classical Electrodynamics, 3rd edition (1998) E. Esarey, B. A. Shadwick, P. Catravas, and W. P. Leemans, Phys. Rev. E 65, 056505 (2002)

Modeling: example

F. Albert et al., Proc. SPIE 2013

Betatron x-ray characterization

F. Albert, B.B. Pollock et al, Phys. Rev. Lett., 111, 235004 (2013).

Electron spectrum measured with two-screen spectrometer

Stacked image plates spectrometer to measure spectral and spatial information on betatron beam

C.D. Chen et al, Rev. Sci. Instrum. 79, 10E305 (2008). F. Albert et. al, Plasma Phys. Control. Fusion 56 084016 (2014).

Lawrence Livermore National Laboratory

Betatron on-axis spectrum measurement

Injection amplitude retrieved from the betatron spectrum

This spectral analysis provides information about betatron oscillation amplitudes without any spatial information

We use the beam profile to retrieve the spatial orientation of the oscillations

This spectral and spatial analysis provides a tomographic reconstruction of electron trajectories

Development of a betatron radiation source at LCLS

MATTER IN EXTREME CONDITIONS (MEC)

- Colocation of three laser systems
 - XFEL (8 keV, 70 fs, 3 mJ)
 - ns optical laser (20 J, ns)
 - fs optical laser (1 J, 40 fs)

Physical mechanisms studied with betatron radiation at LCLS

Collaborators

B. B. Pollock, Y. Ping, A. Fernandez-Panella, S. Hau-Riege, J. Moody (LLNL)

J. L. Shaw, N. Lemos, K.A. Marsh, C.E. Clayton, and C. Joshi (UCLA)

E. Galtier, P. Heimann, E. Granados, I. Nam, H. J. Lee, B. Nagler, A. Fry, A. Mackinnon (LCLS)

W. Schumaker, F. Fiuza, E. Gamboa, L. Fletcher, S.H Glenzer (SLAC SIMES)

A. Ravasio, F. Condamine, M. Koenig (LULI)

B. Barbrel, J. Gaudin, F. Dorchies (CELIA)

S. Mangles, J. Woods, K. Powder, N. Lopes, E. Hill, S. Rose, Z. Najmudin (Imperial College London)

A. Saunders, R.W. Falcone (LBNL)

- P. Zeitoun (LOA)
- B. H. Kim, D. E. Kim (POSTECH)

A. Krygier, M. Harmand (Université Pierre et Marie Curie)

