FACET 2 Science Workshop | 17 October 2016

FLASHForward Plasma Targets

A short overview

Research Group for Plasma Wakefield Accelerators FLA-PWA Project **FLASH**Forward Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

Lucas Schaper

Outline

1. Gas-targets and requirements

- > Stable, reproducible plasma density profiles
- > No emittance spoilers

2. Hydrogen fragmentation dynamics

- > How does atomic and molecular behavior differ?
- > Special case: Ultrashort ionisation beams

3. Diagnostics

> Options for density and homogenity determination of upcoming plasma targets

4. Plasma based beam optics

> compact high field strength focussing

FLASHForward beamline

- **FLASHForward** is
- > an extension to the FLASH 1.2 GeV superconducting RF FEL facility > a new experiment for beam-driven plasma wakefield accelerator research
- Scientific Mission

to demonstrate beam quality from a plasma-based wakefield accelerator suitable for first applications in photon science as a stepping stone towards high-energy physics applications

1: Requirements and resulting target concept

- > compatible with accelerator vacuum standards at FLASH
- > no emittance spoilers
- > full transverse (optical) probing
- > easily replaceable (8h)
- > failsafe operation
- > supporting multiple injection scenarios
- > plasma density
 - > acceleration: up to $5 \times 10^{17} \text{ cm}^{-3}$
 - > injection: up to $5 \times 10^{18} \text{ cm}^{-3}$
 - recent modification: few 10¹⁹ cm⁻³ for targets of few cm length

1: General gas target concepts

Gas Vapour Ovens:

- > density controlled thermally (slow)
- > proven homogeneity especially for long targets
- > operation usually with windows

Gas Jets:

- > pulsed operation
- > poor scaling for long targets
- > Valve components not suitable for accelerator vacuum

Gas Cells:

- > large volume / long filling times
- > homogenous gas density distribution
- > windowless design with components suitable for FLASH vacuum
- > Optional: Plasma generation via electrical HV discharge

1: Injection scenarios

- > Quality of accelerated beam strongly linked to control over initial population of wake-phase space at injection
- > Required: Plasma target structures with sufficient flexibility

> External:	 witness generation at photo gun by second laser p and transport through accelerator to plasma cell → first double bunch generation experiments performed → Experimental aims: staging study, bunch emittance evolution
> Internal:	 → J. Grebenyuk <i>et al.</i>, NIM A 740, 246 (2014) → injection on negative density gradient → demonstrated only in LWFA, new concept to PWFA
> Internal:	 → B. Hidding <i>et al.</i>, Phys. Rev. Lett. 108, 035001 (2012) → interesting because of ultra small emittance (~ nm) → few fs synchronization required → available at FLASH
> Internal:	 → A. Martinez de la Ossa <i>et al.</i>, NIM A 740, 231 (2014) → sub-fs bunches, kA current, sub µm emittance → requires beam current higher than 7.5 kA

1: Density-downramp injection

Fluid dynamic downramp concepts:

- > single gas species, all ionized via pre-ionisation laser
- > gas velocity based, require higher pressure applied to a dedicated gas distribution port
- > concept: expansion to increase from nozzle (jet like)

> downramp length determined by hydrodynamic properties > here: DC operation required since no fast gas valves allowed (vacuum requirements) > result: high gas flux required, demanding for vacuum pumps! > Flow can be reduced by modifying density transition. e.g. razorblade, ...

1: Density-downramp injection

Fluid dynamic downramp concepts:

- > single gas species, all ionized via pre-ionisation laser
- > gas velocity based, require higher pressure applied to a dedicated gas distribution port
- > concept: expansion to increase from nozzle (jet like)

Ionisation based downramp concepts:

- > multi-species gas density distribution, either with pre-mix or localized addition
- > pre-ionization laser only ionizes single species, second species ionized by transverse laser pulse
- > strongly localized ionisation, ionisation volume and density gradient determined by laser-properties

1: Requirements and resulting target concept

Target concept:

> Gas inlets

gas

out

e⁻-beam out

laser out

- > separate pressure control
- > multiple species operation
- Continuous gas flow design
 - > no windows required
 - > no soft valve seats
- "Nozzle" inlet included
 - Spatially confined species
 - Iocalized density peak
- > Transverse optical access
 - > full profile diagnostics

1: Requirements and resulting target concept

> full profile diagnostics

1: Target prototype

- > First experiments with prototype target are
- > Crucial points: vacuum compatibility, leak rate, density distribution, lifetime

1. Gas removal

- Maximum continuous gas flow of 20 mbar I/s hydrogen into main chamber
- > at beamline intersection to FLASH2 pressure has to be < 10⁻⁸ mbar
- > additionally to main chamber 3 differential pumping sections in beam-line
- > efficient for pumping: small diameter pipes bending magnet

> Pumping speeds required:

Experimental chamber:

2500 l/s turbo pump, 450 m³/h backing pump First stage:

600 l/s turbo pump, 35m³/h backing pump Second stage:

600 l/s turbo pump, 35m³/h backing pump Third stage:

450 l/s turbo backed by 300l/s turbo,

35m³/h backing pump

1. Ionisationlaser in-coupling

- > FLASH beam does not ionize by itself
- > Laser inserted at final bending magnet
- > Laser vacuum separated from beam line vacuum
- > All reflective focussing optics and thin window to allow for small B-inetgral
- > focal length of about 18m

Currently:

> Starting first experiments with comparable focussing geometry

> Verify that plasma parameters are compatible with planned experiments

2: Ionisation: Atomic vs. molecular treatment

13.6 eV

> So far atomic ionization potential used

> molecular fragmentation dynamics are more complex

Η

G. Tauscher et al., to be published

Lucas Schaper | plasma.desy.de | FACET 2 Science Workshop | 17 October 2016 | Page 12

2: Fragmentation - Classical 1D model

> Dissociated hydrogen barely ionises at end of pulse!

> Short pulses:

Dissociative path does not contribute for full ionisation cases.

Lucas Schaper | plasma.desy.de | FACET 2 Science Workshop | 17 October 2016 | Page 13

2: Pure ionisation channels - atomic vs molecular

- Ionisation treatment
 - Rate equations describing population
 - Γ_{TBSI} : ionisation rates via extended ADK theory
- > Laser:
 - > 18 fs FWHM gaussian
 - > 800nm

G. Tauscher et al., to be published

2: Resulting electron densities at focus

3: Diagnostics: Considerations

Low density requires novel diagnostic techniques
Interferometry reliable down to ~ 10¹⁸ cm⁻³
Gas profilometry as a first characterization
Initial species-specific gas distribution
Photon scattering on gas molecules
Benchmark for CFD simulations
Use emitted light for diagnostics: Plasma spectroscopy
Online measurement
Non invasive

> spatial and temporal resolution

Longitudinal interferometry: No local information

Raman scattering: shown effective down to ~ 10¹⁷ cm⁻³

3: Plasma Spectroscopy

> Light emitted by the plasma is a fingerprint of the plasma properties

spectrum: spatial species distribution
 N. Matlis et al. J. Appl. Phys. 119, 074501 (2016)

> line ratios: *electron temperature*

> however: decoding information from spectroscopic information can be tricky

electron density

3: Density dependent line width and wavelength

to be published...

L. Goldberg et al., to be published

Lucas Schaper | plasma.desy.de | FACET 2 Science Workshop | 17 October 2016 | Page 18

3: Density determination via Stark Broadening

> FWHM^{1,2} and shift linked to electron density

 $> n_e = C \Delta \lambda_{FWHM}^{3/2}$

- Instrument resolution (currently) 2.5x10¹⁵ cm⁻³
- > 2fs temporal, down to few μ m spatial resolution
- > currently: Obtaining calibration constant via cross calibration

¹ H. Griem et al., Phys. Rev. 116, 4-16 (1959)

² J. Ashkenazy et al., Phys. Rev. A 43, 5568-5574 (1990)

to be published...

L. Goldberg et al., to be published

Lucas Schaper | plasma.desy.de | FACET 2 Science Workshop | 17 October 2016 | Page 19

4: Focussing beam optics

Solenoid:

- > focussing in all dimensions
- high cromaticity
- > weak focussing for high energy

Quadrupole:

- > focussing in one dimensions
- > low cromaticity
- > common g~100 T/m

1) van Tilborg et al. – 2015 - Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams

Plasma lens:

- > plasma electron current generates magnetic field
- > result: F= I x B , focussing force for e-beam
 - > focussing is symmetric in all directions!
- high gradients above g~1000 T/m easily achievable and have been demonstrated¹
- > compact
- > leaks gas into vacuum

Summary

> Plasma-target

- First gas-target prototype has been fabricated
- > Will be tested (and optimized for DDR and tailored capture / release)
- > Hydrogen fragmentation dynamics
 - > Importance of timescales of ionising beams
 - > Also: Even more attention needed when dealing with multi-species challenges (e.g. for ionisation injection)
- > Diagnostics
 - > Plasma spectroscopy offers insight into plasma parameters
 - > Stark broadening offers an alternative approach to diagnose in regimes upcoming at high energy accelerators
- > Plasma lensing
 - > First results show focussing and beam steering at gradients of about 760 T/m
 - > Upcoming campaign in early November

Thank you...