Active plasma lenses at 10 GeV

Jeroen van Tilborg, Sam Barber, Anthony Gonsalves, Carl Schroeder, Sven Steinke, Kelly Swanson, Hai-En Tsai, Cameron Geddes, Joost Daniels, and Wim Leemans

BELLA Center, LBNL

ACCELERATOR TECHNOLOGY & ATAP

U.S. DEPARTMENT

Magnetic lenses play a critical role in accelerator applications. Strength & tunability desirable.

Accelerator applications \rightarrow transport line

- Magnetic lens for collimation, focusing
- Focal length ~ gamma / (dB/dr)
- High gradient \rightarrow compact applications
- High gradient \rightarrow high energy applications
- Ideal: tunable, radially symmetric
- Active Plasma Lens meets these criteria

Discharge current flowing through a capillary: linear B-gradient for uniform current distribution

Active plasma lens an "old" concept for ion beams. Attractive due tunability, symmetry, and strength

Active Plasma Lens

- Introduced 1950s (ion beams) Panofski et al. RSI 1950
- Radial symmetric focusing
- Tunable, up to ~1 kA ("active")
- Gradients >3000 T/m

Experimental demonstration on Laser-Plasma Accelerated electron beams in 2015

van Tilborg et al. PRL 115, 184802 (2015)

Energy-dispersed beam size diagnostic reveals oscillations within plasma lens

Transverse scan useful to measure focusing gradient

Where active plasma lenses can provide unique solutions: 1. Ultra-relativistic e-beams

For 300 MeV e-beam Solenoid (2 T, L=20 cm): F=500 cm Quad doublet (500 T/m, L=3 cm): F=13 cm Active plasma lens (2000 T/m, L=3 cm): F=1.7 cm

For 10 GeV e-beam Quad doublet (500 T/m, L=3 cm): F=4.5 m Active plasma lens (2000 T/m, L=6 cm): F=0.28 m

 ∂B $k = -\frac{q}{2}$ $m_0 \gamma c \ \partial r$

(also of interest to ion beams) Panofski et al. RSI 1950, Boggasch et al. Proceedings EPAC '92

Where active plasma lenses can provide unique solutions:2. Rapid capture for compactness, mitigation ε growth

- Compact (staging)
- Quick capture \rightarrow emittance mitigation for $\Delta \gamma / \gamma \sim \%$
- Quick capture \rightarrow matching in undulator for larger $\Delta \gamma / \gamma$

Possible limitation: emittance degradation from beam-driven wakefields for dense e-beams

Esarey et al. Rev. Mod. Phys. 2009

Possible limitation: emittance degradation from beam-driven wakefields for dense e-beams

To minimize wakefield effect:

- Let e-beam divergence more
- Operate at highest current (shortest cap)
- \rightarrow reduce relative effect
- Emittance degradation ~1/ γ
- Away from resonant density (weak effect, low density most practical)
- Wakefields play role for ">20pC sub-GeV
- <100µm" beams

250 MeV, 0.25 micron source, 1.5 mrad L=2 micron, Lprop=3 cm, σ=45 micron nbeam=1.3e15 cm-3 (25pC) Lens=840 + 80 T/m front-end variation

Possible limitation: emittance degradation from non-uniform current

Radial current distribution dominated by temperature Towards peak of current pulse: more current on-axis!

only weak dependence of n_e in $\ln \Lambda! \rightarrow \mathbf{J}$ independent of number of charge carriers

From Helsinki University online lecture

Possible limitation: emittance degradation from non-uniform current

Office of Science

ACCELERATOR TECHNOLOGY & ATAP

On-axis current concentration reveals itself as donut mode when beam is over-focused

On-axis current concentration reveals itself as donut mode when beam is over-focused

Simulation

Stability: 0.5% rms jitter in current at e-beam timing

Conclusion

70 Amps, uniform

Effect of on-axis current (stronger near-axis B-field gradient)

Title

