

FACET-II Design Update

2016 FACET-II Science Workshop October 17 - 19, 2016, SLAC National Accelerator Laboratory

Glen White

Planning for FACET-II as a Community Resource

FACET-I Experience

SLAC

Typical requirements for FACET experiments @ 3.2 nC (20.35 GeV) e⁻ & e⁺

- $\sigma_x, \sigma_y \sim 20-30 \text{ um}$
- $\sigma_z \sim 20-30$ um (compressed)
 - δ_E ~ 1.4% rms
- $\sigma_z \sim 60$ um (un-compressed)
 - δ_E <1% rms

Need to control dispersion, coupling, focal waist position

- 4 sextupoles on movers
- 2 skew quadrupoles
- For high energy spread:
- chromaticity and second-order dispersion compensation by sextupoles

FACET represented a beam dynamics challenge with simultaneous transverse and longitudinal phase space requirements and user-driven flexibility requirements

FACET-II Key Performance Parameters

SLAC

Description of Scope	Units	Threshold KPP	<i>Objective</i> <i>KPP</i>
Beam Energy	[GeV]	9	10
Bunch Charge (e-/e+)	[nC]	0.1/0.1	2/1
Normalized Emittance in S19 (e-/e+)	[µm-rad]	50/50	20/20
Bunch Length (e-/e+)	[µm]	100/100	20/20

Threshold KPPs

 Minimum parameters against which the project's performance is measured when complete

Objective KPPs

Desired operating parameters which may be achieved during steady operation

Baseline design allows for objective key performance parameters specified by science program

FACET-II Stage 1 FY17-19

- Goal: Deliver compressed electron beam from S10 to experiments in S20
- Major upgrade: Electron beam photoinjector in Sector 10
- **Scope:** Injector, shielding wall in S10, bunch compressors in S11 (BC11) and S14 (BC14), beam diagnostics

Electron Injector

SLAC

- NLCTA ("Orion") RF Gun, E₀=90MV/m
- L0 accelerates to 135 MeV
- LH chicane off project, space reserved
- 35^o bend into main linac L1 @ Sector 11
- Q < 5 nC, <300 A peak current
- Design: γε_x = 3 μm-rad @ 2 nC, 240 A
- Emittance compensation design using IMPACT-T
- Beam distribution from IMPACT-T simulation used to assess
 FACET-II performance in tracking model

Design of the Injector Complex up to BC11 based on LCLS Sector 20 injector

Electron Injector Optimization & Simulation

-SLAC

		Tracking Simulation Resu			Results		
Parameter	Symbol	Unit	Req.	Orion	Orion + LH	LCLS	LCLS + LH
Peak current at injector exit	I _{pk}	kA	-	0.24	0.24	0.36	0.33
Peak current at Sector 20 IP	I _{pk}	kA	>10	70	36	95	56
Bunch length after injector (rms)	σ _z	μm	-	838	839	617	618
Bunch length at Sector 20 IP (core rms)	σz	μm	<20	1.8	4.3	1.5	2.8
Transverse emittance after injector (90%)	γε _{x,y}	µm-rad	-	2.9	2.9	3.0	3.0
Transverse emittance into Sector 19 (90%)	γε _{x,y}	µm-rad	<20	3.9	3.3	4.0	3.5
Tranverse beam size at Sector 20 IP (core rms)	σ _x ,σ _y	μm	<20	17.7, 12.2	16.1, 11.9	17.5, 9.8	16.5, 9.9

LH = "laser heater"

All options meet KPP requirements Increased longitudinal brightness possible with LCLS gun

- ε-compensation optimization & tracking with IMPACT-T & Lucretia
- Optimize:
 - Gun Sol
 - Gun RF phase
 - Cathode-L0a drift
 - 2nd solenoid

Baseline FACET-II Electron Design Parameters

SLAC

Compression scheme design satisfies KPP's, flexibility to satisfy all planned experimental activities - verified with tracking simulations

Main Linac Layout & Bunch Compressors

- Sector 20 operations 4.0-13.5 GeV possible (10 GeV design)
- Spare klystrons, feedback and TCAV diagnostics stations included in design

Layout of Linac Sectors 11-19 to meet required flexibility of experimental program

SLAO

FACET-II Stage 2 FY17-20

- Goal: Deliver compressed electron beam from S10 to experiments in S20
- Major upgrade: Positron damping ring
- Scope: Damping ring, positron bunch compressor & return line

FACET-II Pulse Structure (Stage-II)

 Electron "scavenger" pulse pulled off in S19 by existing fast kicker to generate e+ bunch

Two bunches per pulse shared in L2 and L3 for Stage 2 operations

Positron Damping Ring in Sector 10

- 2.9 m diameter ring
- Vertical injection & extraction
- SLC septa, kickers & RF
- New combined-function arc magnet designs

CAD drawing of Damping Ring layout & integration in sector 10

Baseline FACET-II Positron Parameters

Compression scheme designed to satisfy objective KPP, verified with tracking simulations

Monte Carlo Simulation Including Errors

SLAC

KPP Parameter	Electron Bunch		Positron Bunch	
	Design Req.	Simulation	Design Req.	Simulation
ε _x (μm-rad) [S19]	<20	4.4 +/- 0.5	<20	10.7 +/- 0.7
ε _y (μm-rad) [S19]	<20	3.3 +/- 0.1	<20	13.0 +/- 1.2
σ _z (μm) [IP]	<20	3.1 +/- 1.5	<20	16.5 +/- 0.2
I _{pk} (kA) [IP]	>10	64 +/- 16	>5	5.8 +/- 0.2

A MC simulation including all known error sources was performed – KPP Design parameters are met with expected error tolerances

Configuration for 2-Bunch (e-) Experiments:

Request:

- 2 Bunches: Drive + Witness, $\Delta t = 250$ fs [~75 µm]
- Drive Bunch:
 - Q = 1.6 nC
 - I_{pk} > 15 kA
 - $\gamma \epsilon_{x,y} < 10 \ \mu m$ -rad
- Witness Bunch:
 - Q = 0.5 nC
 - $I_{pk} > 7.5 \text{ kA}$
 - $\gamma \epsilon_{x,y} < 10 \ \mu m$ -rad
- I_{pk} Drive:Witness = 2:1

Longitudinal Bunch Profile Definition @ Laser Heater

Property	Drive Bunch	Witness Bunch	
Q / nC	1.6	0.5	
δ _E / Ε (%	0.08	0.08	
uncorrel.)			
Shape	Top-hat, ramp	Top-hat, ramp	
Ramp Time / μs	10	10	
L / mm	1.0	0.375	
<ez> r_{correl}</ez>	-0.45	0.4	
dz / mm	1.62		

Highlighted boxes are optimized values

Particle Tracking @ E200 IP

Linac RF Phase Settings L1 ϕ = -18.0⁰ L2 ϕ = -38.0⁰ Δt @ IP = 250 fs BC11 & BC14 unchanged

S20 Notch Collimator (100 pC)

Parameter @ IP	No COLL		S20 Notch COLL	
	Drive	Witness	Drive	Witness
Q / nC	1.6	0.5	1.5	0.5
$\delta_{\rm E}$ / E (% rms)	0.24	0.24	0.16	0.25
I _{pk} / kA	32	16	34	16
γε _y / μm-rad	3.4	3.2	3.3	3.2
γε _x / μm-rad	6.4	7.8	5.6	7.8
γε _x / μm-rad (90%)	5.7	6.1	5.1	6.1

Dynamic Errors (100 Monte Carlo Seeds)

-SLAC

Property	Value
Source Charge Fluctuation	1% (e-) 2% (e+)
Source Position Fluctuation	0.05 σ _{x/y}
Initial Electron Laser Timing	200 fs
L1X Phase Jitter	0.25 degX
L1S Phase Jitter	0.1 degS
L2 Phase Jitter	0.25 degS
L3 Phase Jitter	0.25 degS
LOP Phase Jitter	0.1 degS
L1X Amplitude Jitter	0.25 %
L1S Amplitude Jitter	0.1 %
L2, L3, LOP Amplitude Jitter	0.25 %
BCO Magnet Strength Jitter	1e-5 dB/B
BC1 Magnet Strength Jitter	1e-5 dB/B
BC2 Magnet Strength Jitter	1e-4 dB/B
BC3 Magnet Strength Jitter	1e-4 dB/B
Magnet Vibration (x/y)	1.5 / 0.5 um
Magnet Vib. (PEC) (x/y)	0.4 / 0.2 um

No Collimation

Parameter @ IP	Drive Bunch	Witness Bunch
ε _x (μm-rad) (90%)	7.2 +/- 1.6	7.4 +/- 2.0
ε _y (μm-rad) (90%)	3.2 +/- 0.1	3.0 +/- 0.1
∆t (fs)	243 +,	/- 45
l _{pk} (kA)	35.5 +/- 6.6	16.1 +/- 0.6

Dynamic Errors (100 Monte Carlo Seeds)

Tracked Particles @ S20 IP with Collimation

20

Current S20 BC20E (W) Chicane @ r56=+5mm

-SLAC

New BC20E Layout Option

CSR emittance growth properties should be better, fewer magnets, simpler lattice, lower beta functions

R56 = +4.15 mm (adjustable)

 $\Delta S = 49.088 \text{ m}$; $\Delta z = 49.0773 \text{ m}$ ($\Delta z == \text{Current S20 W-chicane}$) ($\Delta s = +4.3 \text{ mm}$)

 NOT compatible with current e+ sailboat (need 5.24cm path length difference BC20E-BC20P)

9 Quadrupoles & 4 bends

Possibility to reduce Δz enough to move XTCAV to common line after BC1-R?

SLAO

FACET-II Pulse Structure (Stage-II)

 Electron "scavenger" pulse pulled off in S19 by existing fast kicker to generate e+ bunch

Two bunches per pulse shared in L2 and L3 for Stage 2 operations

FACET-II Pulse Structure (Stage III)

witness bunch ~200 μ m behind e- drive bunch

Sailboat chicane design goals:

- 5.27 cm (175 ps) path length difference
- Simultaneous focusing solutions for e- and e+

Three bunches per pulse shared in L2 and L3 for Phase-III operations

Sector 20 Sailboat Chicane Overview

BC20P ^{1.2}–12 Dipoles 9 Quads ¹-6 Sextupoles 0.8 0.6 m/ X 0.4 e+ 0.2 0 -0.2 e BC3E -0.4 1920 1930 1940 1950 1960 1970 1980 1990 2000 Z/m

2016 FACET-II Science Workshop

BC20P "Flying Saucer" Chicane

1.2 $\Delta S = 5.24 \text{ cm} (175 \text{ ps})$ 1 BC20P R₅₆ = +5 mm BC20P phase-adjust chicanes switched 0.8 OFF here, assumed not used 0.6 Adjust ΔS by changing E_e vs. E_p 0.4 0.2 X/m -0.2 -0.4 -0.6 -0.8 1935 1945 1950 1955 1970 1975 1930 1940 1960 1965 Z/m

2016 FACET-II Science Workshop