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Trojan Horse: Ultralow emittance / ultrahigh 5D brightness
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was eventually published in 2012
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Trojan Horse: Ultralow emittance / ultrahigh 5D brightness
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Ultralow TH emittance and ultrahigh 5D-brightness possibly transformative impact, but
energy spread may Kkill beam during extraction and transport, showstopper for FEL
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“the energy spread&chirp problem*:
‘steep’ price to be paid for ultrahigh energy gradients



Ultrahigh 6D-brightness: concept of TH-released escort beam for chirp control
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Ultrahigh 6D-brightness: concept of TH-released escort beam for chirp control
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Ultrahigh 6D-brightness: enabling 5™ generation light sources

Photon Science

Intense
Electron Sources
LINAC ,
7 “, > \ ec,%
Advanced S0
PWFA Staae ) 2w eg.boost FEL gain,
g & ultrashort y-pulses..
=59 1y T ‘ High
' ul
LINAC—LWFA e STy, Energy
“external injection” energy boosting & o3 ’77/1‘&3,7 Co PhYSICS

quality boost through Mrag
plasma photocathode

LWFA

e.g.as injector,
staging..

e.g. for advanced light sources:

Before dechirping After dechirping
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* everything happens in a single plasma stage with uniform H/He density
e don‘t have to worry about electron witness beam injection

e dechirping within plasma
* “no“ extraction problems

* no qualitative additional complexity compared to Trojan: need 1 mJ laser pulse



Ultrahigh 6D-brightness: enabling 5™ generation light sources at @ FACET"

TH-PWFA plasma stage

TH laser pulse(s) FEL simulations:
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Ultrahigh 6D-brightness: enabling 5™ generation light sources at @

TH-PWFA plasma stage

TH laser pulse(s) FEL simulations:
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=

match beam to undulator
(Elegant)
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Ultrahigh 6D-brightness: enabling 5™ generation light sources at @

TH-PWFA plasma stage

TH laser pulse(s) FEL simulations:

d + desXie
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PIC simulation using Gaussian
drive beam shapes or
macroparticle input from full
beam optics simulations such
as ELEGANT etc. modeled with Elegant

-
model optically engineered
downramp for emittance
preservation, include into PIC

match beam to undulator
(Elegant)

o fulfil Pellegrini criterion
* Dbeat Pierce parameter (by large margin)
e exploit ultrahigh FEL gain

a)

b)

FACET:-II

Facility for Advanced Accelerator Experimental Test

preliminary start- to- end simulations:

—— Radiation Profile at z=8 m
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5 angstrom, GW power after ~10m
e exploit ultrahigh single stage PWFA electron energy gain

= realise 5th generation light sources, such as ultrahard x-ray FEL
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Ultralow emittance, low energy spread, ultrahigh 6D-brightness:
The price we'’re after at FACET-II

E210 lessons learned, techniques developed

v
é8 FACET:II

Facility for Advance: d Accelerator Experimental Tests



Great experience with 90° Trojan setup in final FACET run
Multi-purpose tool for diagnostics and injection
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e Used in E210 for a) time-of-arrival, b) injection



Proposed uses of 90° laser pulse and implications

ICS
Plasma torch diagnostic,
Time-of-arrival injection 1>1014 W/cm?
I:%Ilovxgout probe plasma glow, 1>104 I>few 21014
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Proposed uses of 90° laser pulse and implications

7 used/shown in E210 at FACET NCS
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Proposed uses of 90° laser pulse and implications

l/’ ------------- ‘\\
l | ICS
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Time-of-arrival plasma glow

e used for E210, after digging into observation in longitudinal direction:

axicon laser only e-beam only e-beam after axicon laser

beam “heats” pre-ionized plasma, resulting in stronger recombination light signal:
use for spatio-temporal alignment of TH laser and electron beam

400 T T T T T T 400
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W CP
30 || U 100 1)
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:'| Q
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temporal alignment
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relative plasma glow intensity [a.u.]

Time-of-arrival plasma glow

Extremely robust method, just

scan laser jitter and count
plasma glow on CCD
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After sorting shots by electro-optical sampling time-of-arrival

FACET e-beam

measurement: real TOA between e-beam and laser

glow signal vs. laser timing
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Time-of-arrival plasma glow

e fs-scale plasma TOA method

e also used for spatial
alignment

..”but there is much more”

relative plasma glow intensity [a.u.]
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Proposed uses of 90° laser pulse and implications

I, \\
l : ICS
: : Plasma torch diagnostic,
| Time-of-arrival : injection I>10% W/cm?
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Time-of-arrival plasma glow

Field ionization depends largely on
» small field deviations can lead to large changes in ionisation rate

ADK ionization rate

-

o
—
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o
-
=

WADK [1/s]
S

-
o
)
—

100

0 2%10" 4%10"
E [Vim]

6x10'°
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Tunnel ionization of complex atoms and of atomic ions in an alternating (1]
electromagnetic field
M. V. Ammosov, N. 8. Delone, and V. P. Krainov
Iusiitute of General Physics, USSR Academy of Scignces
(Submitted & April 1986}
Zh. Eksp. Teor, Fiz. 91, 2008-2013 (December 1986)

An expression is derived for the probability of tunnel ionization, in an alternating field, of a
complex atom and of an atomic ion that are in an arbitrary state. The expression for the
tunnel-ionization probability is obtained in the quasiclassical approximation n*» 1.
Expressions are also obtained for states with arbitrary values of [ at arbitrary ellipticity of the
radiation. A quasiclassical approximation yields results up to values n® = 1, with accuracy up
to several percent.

= PR 32 xp \ 2n* =1
T—— t,te\)‘_,ogg, (eV)
($:20) 22X " sne— | ) ;) c—
n*I'(2n*) \ E[GV/m]| o
£2(eV) |

expl ~683 S
e\p! E(GV/m)/

[1] Ammosov, Delone, Krainov. Sov. Phys. JETP (1986)
[2] Bruhwiler, David L., et al. Physics of Plasmas (2003): 2022-2030.



Time-of-arrival plasma glow

FACET-scale e-beam produces
“only” e-fields barely ionizing H2

ADK ionization rate

WADK [1/s]

1018 ‘ ‘ . .
-2 nC, 30x30x30 pum
10" — H,
He
10% -
100
0 2x10" 4x10™ 6x10™ 8x10™
E [V/m]

overlapping laser- and e-beam fields
leads to increase in ionisation rate by
several orders of magnitude due to
ADK rates potentially ionizing even
other gases

WADK [1/s]

a laser beam can be tuned to easily
produce similar fields

ADK ionization rate
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Zimm)

‘“FIELD” — Field lonisation by an Electron-Laser Distribution

Transient overlap of laser and electron beam produces localized field
jonisation and plasma glow

overlap at x,z,t =0,0,0
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laser focus
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‘“FIELD” — Field lonisation by an Electron-Laser Distribution

Transient overlap of laser and electron beam produces localized field
jonisation and plasma glow

frame co-moving with laser
observed recombination light Electric Field

laser focus

-100.00 ps GVIn

Sx
FIELD area

| e

Z [mm]
ie-beam direction)

L]
29.0 29.5 30.0 30.5
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‘“FIELD” — Field lonisation by an Electron-Laser Distribution

Timing scan using E210 delay line:

waterfall-plot reveals moving FIELD area
for different timings

single shot

laser focus

FIELD area

Zimm)
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and strength
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relative timing

and spatial
overlap

5 10




“FIELD” — Field lonisation by an Electron-Laser Distribution

* beam heating enhanced plasma glow if e-beam shoots after laser has passed
* no change in plasma glow if laser shoots after e-beam

laser
earlier than
e-beam
(beam
heating)

w
|

timing [ps]

4

transition /

= exact temporal alignment
of laser and e-beam
“TO“

5 L
laser (partially)
overlaps with e-
| beam field
(FIELD-regime)

5 10 15 20 25 30 35 40 45 50



“FIELD” is naturally species selective

ADK ionization rate
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“FIELD” is naturally species selective

FIELD time range,

Works even in the mix!
temporal overlap between

Use H (656nm) or He (589nm) filter
o0 laser and q-beam
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“FIELD” is an extremely powerful, robust, low-cost diagnhostics

Transient overlap of laser pulse and particle beam leads to higher local ionisation
rates and plasma glow

e tune laser intensity, spatial overlap and temporal overlap

e “scan” e-beam electric field with a laser pulse

e Measure size, charge and form factor of e-beam

e various gas media with different ionisation thresholds can be used

e Great tool to find synchronisation between laser and e-beam

 Measure (selective) gas density profiles

e Limits? Shorter laser pulses, shapes, geometries etc..

e Useful to explore atomic and atomic physics? E.g. H2 and other gases
dissociation..

* Also possible with e-beam/e-beam, e-beam/e*-beam, laser/laser or various other
combinations..

e Terrible acronym..

lonization Ratio lonization Ratio
Electric Field

Electric Field
~15.00 ps

= g & 8 &8 &F¥

T. Heinemann, A. Knetsch et al.
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Proposed uses of 90° laser pulse and implications

1 . .
Tunllnel lonization
Overlap, 110
Wicm?

1

P

90° laser intensity

pmmmmm—————— \\
i ICS
: Plasma torch diagnostic,
: Time-of-arrival injection 1>1014 W/cm?
Blowout probe plasma glow, 1>10%4 |>few 1014
ala Jena | ’ 2
’ 1 W/Cm2 chm _ .
I~1010 W/em? | All-optical
I Plasma kicker
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90° probing of wakefield

* Few-cycle (sub-10 fs) pulses useful for probing wakefield dynamics (in addition to E224), but also
useful for TH injection

« Pathway to short pulses hollow fibre compression but limited as regards power (up to 1016
W/cm?). Alternative OPCPA for tens of mJ energies. Both shortens pulse, but adds complexity.

* Need few hundred pJ both for probing (collinear, ~1cm spot size at 101° W/cm?) as well as for TH
(focused, ~10 pum spot size at 1014 W/cm?)

» Experience since a decade with both collinear probing* as well as focused few-cycle pulses for
lonization up to LWFA**

shadowgraphy w/ probe I 2nd gas stage: PWFA gas jet
shows plasma formation — ' L beam diameter w/o plasma lens
in H2 jet, but not in He jet: " microscope
‘ B objéctive - : -
Istgas stage: = = for probes H2/He gas jet 0

LWFA gas cell

remaining LWFA las beam focusing w/ plasma lens
preionizes H2 gas jeg »

(but not He)

tunable distance ~7 fs,0.2 mJ probe
between gas stages (suitable also for injection)

* Jena: S. Kuschel, T. Heinemann, O. Karger, D. Ullmann (now at Strathclyde), A. Knetsch .. B. Hidding et al., PRAB 19,
071301 (2016), Daniel Ullmann, MSC thesis, Optical Diagnostics for LWFA Experiments, 2015

** Disseldorf: 1016 W/cm? J. Osterholz .. B. Hidding et al., Phys. Plasmas 15, 103301 (2008); F. Brandl, B. Hidding et al., PRL
102, 195001 (2009);
Munich 101° W/cm? via OPCPA: K. Schmid, F. Tavella (now at SLAC).. B. Hidding et al., PRL 102, 124801 (2009), Comptes

Rendus Physique 10, 140 (2009) 31



90° probing of wakefield

» Either hollow-fibre or OPCPA “required” to get to short pulses

« ldeally at longer wavelengths (mid-IR) due to (comparably low densities (contrast

trade-off)

« BMBF-funded projects underway at Jena (Kaluza/Paulus) to establish technique in

mid-IR, for use e.g. at FLASHForward

» Faraday-rotation, polarimetry also useful

= see talk by Mike on
Monday

o
(3

...................................................................

Normalized Intensity
Modulation
o

-

_ 1 i i 1 i i 1 i i i i i
0 20 40 60 80 100 120 140 160 180 200 220 240
Length (um)

M. Schwab et al., Appl. Phys. Lett. 103, 191118 (2013)

Establishing these methods
as part of “Lab in the Bubble®
EPSRC project (D.
Jaroszynski et al.) at SCAPA
Co-funded PhD (Ullmann)
with CLF
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Proposed uses of 90° laser pulse and implications

ICS
Plasma torch diagnostic,
Time-of-arrival injection 1>10%6 W/cm?
Blowout probe plasma glow, 1>104 I>few 104
ala Jena, Wicm? Wicmp” All-optical ™

[~1019 W/cm?2 _ 1
Plasma kicker!
I>few 1014

W/cm?

Trojan, I=few
1014 W/cm?

Tunnel lonization
Overlap, 1~10%
W/cm?

N NN N NN N N SN NN SN SN NN SN NN SN NN SN SN SN SN SN S N S Sy

90° laser intensity

33



Main plasma electron kicker
FACET e-beam

vacuum compressor focus

plasma imaging
diamond window

Problem: Preionization laser vs electron beam
misalignment (drift)
Misalignment leads to kick due to plasma densitiy gradients

dipole

(a) Blowout phosphor screen

region

. P. Muggli et al., Nature 411, 43
1 \/ (2001), PRSTAB 4, 091301 (2001)

Ion channel plasma
gas

Beam deflection @ (mrad) &
o

8 -4 0 4 8
Incident angle ¢ (mrad)




Main plasma electron kicker

FACET e-beam
1Y

'\,\ ‘I pBi window
[

EOS !
upstream

vacuum compressor focus

plasma imaging
diamond window

Used BPM's as diagnostic for e-beam vector

3
. )

2 i : dipole A
T
: TN ° - o SN 2 phosphor screen
:EJ 0 o E o ’ b 0% @ 1
] S B 3 \ 7 £
p w gw\ — E 0

2 2l =

) 2 A 0 1 2 3 -3 L \ !

x kick (mrad) 2 2 K xk\ck?mrad) ! ? : '3’3 2 1 0 1 2 3
x kick (mrad)

10 T T T T T T T 10 T T T T T 10
- ; -
£ aka Streudichteregulator . % .. T,
I—;-: 6l 4 26 z 5
3 ; g
E Jl § 2= E 2
2 0 1 1 1 1 1 1 1 L o v y 7 y : 0 ’

10 20 0 40 50 ] 70 &0 a0 100 10 20 30 40 50 60 70 80 90 100
10 20 30 40 50 60 70 80 90 100 shots shots

shots



Main plasma electron kicker

FACET e-beam
-

BPM
Be window

|
o~

EOS
upstream

vacuum compressor focus

diagnostic

plasma imaging

Allows data taking after sunrise!

.
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This saved the day:
Online alignment tool

Before: evacuate, realign with OTR
screens at low laser energy

When vacuum chamber refilled,

chances are that drifts have set in
= redo alignment procedure..

diamond window

dipole ‘
phosphor screen

100



OAP roll scan plasma torch ultrafast plasma kicker

 Generate off-axis plasma torch, bunch(es) see Theory: G. Wittig et al.,
density gradients, are kicked NIM A 829 (2016)

air

compressor

\

diagnostic

plasmaimaging
diamond window

(>~

QS1

dipole
phosphor screen

0
09 1 ik 12 13 14 15 16 17 18 19
OAP z roll / steps

500 1000 1500 2000 2500
X (um) 7



0.2

OAP roll scan ultrafast plasma Kicker e-beam pointing
015
» Generate off-axis plasma torch, bunch(es) see )
density gradients, are kicked B
air ? 005+ |
compressor *
ol 1 ]
/ 0.05 : ‘ w ‘ .
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OAP focus z position /um
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Proposed uses of 90° laser pulse and implications

,/ ---------- S
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Plasma kidker
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90° laser intensity



AW W, [%]

Useful in 90°, but in head-on configuration potential pathway to ultralow
emittance diagnostics

Delay stage

ay [mrad]

Q

y = 46,000

X
/ ‘ Plasma stage
v Parabola with hole Hydrogen + helium

_ _ .. 0
En—verms—’){'?

0.6

o
IS

o
N

=1.0nC

Stretching glas bulk

Trojan Horse laser
a,=0.02

Array of delay stages

ICS radiation

Scattering laser train

W=10mJt=200fs

a,=0.012

Bending magnet ﬂ:

Beam diagnostics

Spectrometre
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+ shielding

Sample betatron oscillations with
multiple ICS events

U

B modulates ICS spectrum

Use S to determine transverse
emittance

U

= Bunchsize o, needs to be measured
independently (multishot or by using
ICS spot size, or FIELD...)

— Can also be fitted to spectral
shape! (e.g. Plateau, Geddes,
et al., PRL 109, 064802 (2012)

= ICS process is non-invasive
= in situ single-shot (?)

emittance measurement during
propagation in plasma 40
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“Normal“ TH bunch
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= Nice contrast
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Obtained emittance:

€, = 8.9 x10® m rad

Statistical emittance:
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Proposed uses of 90° laser pulse and implications
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SSTF (Simultaneous Space Time Focusing)

(a) input pulse, ag~0.02
GRATING PAIR 40 fs, 800nm
SYSTEM

e- beam /
driver

holed off-axis
parabola

(b) 8 _I — -Galussia.n 4
- Paa =4
—Baa =10

Structure of SSTF beams:

* Frequencies are spatially
separated (spatial chirp)

o — — —

« The amount of spatial chirp
7 /7 rate (f) is related to a
R dimensionless parameter
I called beam aspect ratio (8g,)

2 2
1+ 134 z 1_|_L » Temporal overlap only occurs
at the focal region
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SSTF (Simultaneous Space Time Focusing)

0 ~ E field (GV/m) 5540 E field (GV/m) 60
@ A, = 150 pm _[|(b)
20 | H* blowout
‘ 5 g ‘ eab_eam
= river
| S 3
injected -20 | accelerated He e-
He e- to ~10 MeV
360 400 440 z(pm) 1.12 1.16 1.20 z (mm)

* Can be used (e.g. In longitudinal direction) for TH to generate extremely short (as-
level) and low emittance witness beams (Rayleigh length small, electrons are
released very confined, no betatron phase mixing) albeit low charge beams

(presented this for lliad FACET proposal in Sep 2014)
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SSTF (Simultaneous Space Time Focusing)

* But are also useful to
produce microscopic
intensity spike(s) @

electron beam (e.g.
10 microns diameter)

Explore for plasma glow FIELD

method:
Scan electron beam and observe
plasma glow, produce electron beam

tomography data
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SSTF (Simultaneous Space Time Focusing)

* Or maybe even produce microscopic intensity spike array:

GRATING PAIR input pulse, ag-0.02

_______ sysTem____| 20 'S 800nm
% ° i
®o ® |
® ..‘
® " Everything in one shot (beam heating

electron beam (e.g. and plasma glow to be avoided)
10 microns diameter) 46



Need a lot of laser pulses!

ICS
Plasma torch diagnostic,
Time-of-arrival injection 1>1014 W/cm?
I?Ilovxi]out probe plasma glow, 1>104 I>few 21014
ala Jena, 2 W/cm -
1010 W/erm? Wicm All-optical
Plasma kicker
Trojan, I~few I>few 1014
1014 W/cm? W/cm?

Tunnel lonization
Overlap, 1~10%
W/cm?

90° laser intensity

D.Ullmann cand.  _ . d Stthf ol o . P [l
PhD (ex Jena, . Heinemann cand. rathclyde
Strathclvde Phd, (co-)funded by
now YO&  bEsy A. Sutherland cand. Phd,
co-funded by (co-)funded by SLAC Plasma-based Particle and Light Sources

C L F) Strathclyde Centre for Doctoral Training



Important impact on FACET-II development and setup

« Need optical access with laser focus intensities up to 10'® W/cm? or more
« E210 TH, EOS, E224 lasers were going through window (B-integral)

« Problem gets more and more complex as required laser intensities increase
« Focusing optics may need to be inside the vacuum/gas chamber

* Need more laser pulses (e.g. sub-10 fs)
* Need as good as possible beam profiles e.g. for FIELD
= Need additional laser systems!
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Summary

Want to pursue ultralow emittance, HEP, 6D-brightness, 5" gen. light source
Lessons learned at E210 FACET are invaluable
Need to massage the plasma with laser beams

Laser beams also highly useful for diagnostics: timing&synchronization, spatio-
temporal alignment of beams, hybrid electron-laser-plasma diagnostics..

Many of these diagnostics have dual (actually, multi-) use: crucial for Trojan, but also
useful already for commissioning e.g. electron beam in first three months

Can get work done on the ground at SLAC already with Ti:Sapphire (no need to wait
until 2019)

Need a lot of laser pulses with different parameters: Need additional laser system(s)!
Prioritization will have to be done..

The “access challenge® (12hrs per 2 weeks): robustness and simplicity trumps! Still
may need double or triple redundancy for some systems

Need improved vibrational/thermal stability

Need to have optical access from various angles to plasma source!



